Public Library of Science
Browse

Molecular mechanisms of fentanyl mediated β-arrestin biased signaling

Posted on 2020-04-10 - 17:43

The development of novel analgesics with improved safety profiles to combat the opioid epidemic represents a central question to G protein coupled receptor structural biology and pharmacology: What chemical features dictate G protein or β-arrestin signaling? Here we use adaptively biased molecular dynamics simulations to determine how fentanyl, a potent β-arrestin biased agonist, binds the μ-opioid receptor (μOR). The resulting fentanyl-bound pose provides rational insight into a wealth of historical structure-activity-relationship on its chemical scaffold. Following an in-silico derived hypothesis we found that fentanyl and the synthetic opioid peptide DAMGO require M153 to induce β-arrestin coupling, while M153 was dispensable for G protein coupling. We propose and validate an activation mechanism where the n-aniline ring of fentanyl mediates μOR β-arrestin through a novel M153 “microswitch” by synthesizing fentanyl-based derivatives that exhibit complete, clinically desirable, G protein biased coupling. Together, these results provide molecular insight into fentanyl mediated β-arrestin biased signaling and a rational framework for further optimization of fentanyl-based analgesics with improved safety profiles.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?