Public Library of Science
Browse

Intestinal restriction of Salmonella Typhimurium requires caspase-1 and caspase-11 epithelial intrinsic inflammasomes

Posted on 2020-04-13 - 17:36

We investigated the role of the inflammasome effector caspases-1 and -11 during Salmonella enterica serovar Typhimurium infection of murine intestinal epithelial cells (IECs). Salmonella burdens were significantly greater in the intestines of caspase-1/11 deficient (Casp1/11−/−), Casp1−/− and Casp11−/− mice, as compared to wildtype mice. To determine if this reflected IEC-intrinsic inflammasomes, enteroid monolayers were derived and infected with Salmonella. Casp11−/− and wildtype monolayers responded similarly, whereas Casp1−/− and Casp1/11−/− monolayers carried significantly increased intracellular burdens, concomitant with marked decreases in IEC shedding and death. Pretreatment with IFN-γ to mimic inflammation increased caspase-11 levels and IEC death, and reduced Salmonella burdens in Casp1−/− monolayers, while high intracellular burdens and limited cell shedding persisted in Casp1/11−/− monolayers. Thus caspase-1 regulates inflammasome responses in IECs at baseline, while proinflammatory activation of IECs reveals a compensatory role for caspase-11. These results demonstrate the importance of IEC-intrinsic canonical and non-canonical inflammasomes in host defense against Salmonella.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?