Public Library of Science
Browse

General structure of the Gaussian Field Latent Class model.

Download (0 kB)
figure
posted on 2013-01-17, 01:31 authored by Corentin M. Barbu, Andrew Hong, Jennifer M. Manne, Dylan S. Small, Javier E. Quintanilla Calderón, Karthik Sethuraman, Víctor Quispe-Machaca, Jenny Ancca-Juárez, Juan G. Cornejo del Carpio, Fernando S. Málaga Chavez, César Náquira, Michael Z. Levy

Working backward, we consider the infestation data to be the result of a latent infestation status , observed by imperfect inspectors of sensitivity . The true infestation is a binary manifestation of an underlying continuous infestation predictor . Cofactors and a local error term, , form the local component. The spatial component is modeled as a Gaussian field. The fit parameters, and , respectively tune how distances between neighbors and the streets define the spatial dependency between households in the spatial component.

History

Usage metrics

    PLOS Computational Biology

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC