Public Library of Science
Browse
Fig_4.tif (710.14 kB)

Small, fluctuation-driven models reproduce Drosophila locomotor patterns.

Download (0 kB)
figure
posted on 2015-11-23, 15:16 authored by Andrea Maesani, Pavan Ramdya, Steeve Cruchet, Kyle Gustafson, Richard Benton, Dario Floreano

(A) The capacity of discovered models without (left) or with (right) fluctuating inputs (n = 250 models for each condition with 50 models of each size) to reproduce the basal locomotor statistics of Canton-S flies. (B) Fluctuation-driven models from panel A, dashed box, separated as a function of network size (n = 50 models for each size). (C) A dendrogram illustrating the similarity of odor-evoked locomotor patterns across 98 DGRP strains. Hierarchical clustering distance was based on the Pearson’s correlation coefficient between odor-response time-series for each strain. The three strains chosen for further analysis are color-coded cyan (strain A—RAL57), orange (strain B—RAL790), and red (strain C—RAL707). (D) A graph representation of the best model overall in panel B. This model was chosen for all subsequent analysis. Recurrent and reciprocal connection strengths are color-coded. The tau value for each neuron is shown in grey-scale. (E) Odor impulse locomotor patterns for the model in panel D (purple) optimized to match the odor impulse locomotor patterns of DGRP strains A (RAL57), B (RAL790), and C (RAL707). Locomotor frequency time-series for each strain are color-coded cyan, orange, and red, respectively.

History

Usage metrics

    PLOS Computational Biology

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC