${f S3}$ Table: Comparison between scaling exponent of RMSD and scaling exponent of mixing index

Type	LJ strength	$\lambda/2$	$\lambda/2$	β
	ϵ	(for $\phi = 0.4$)	(unconfined)	(for $\phi = 0.4$)
Polymer in good solvent	$\epsilon = 0.25 k_B T$	$\lambda/2 = 0.2$	$\lambda/2 = 0.25$	$\beta = 0.25$
Polymer in poor solvent	$\epsilon = 0.5 k_B T$	$\lambda/2 = 0.2$	$\lambda/2 = 0.125$	$\beta = 0.22$
Polymer melts (reptation)	$\epsilon = 0.75 k_B T$		$\lambda/2 = 0.125$	$\beta = 0.13$
Polymer melts ("jammed")	$\epsilon = 1 k_B T$		$\lambda/2 = 0.125$	$\beta = 0.076$

Table: RMSD $(\sqrt{\langle r^2 \rangle} \sim \tau^{\lambda/2})$ and chromosome mixing index $(\alpha \sim t^{\beta})$