MODEL OF RBP-AS EVENT REGULATORY RELATIONSHIPS

As described in [1], sequence-specific RNA-binding proteins bind to pre-mRNA to control
alternative splicing. And each alternative splicing event is controlled by multiple RNA-binding
proteins. Hence, alternative splicing events are dependent on RNA-binding proteins, but not the
other way around. Based on the mass action kinetics [2], [3], [4] and the above priori knowledge,
the regulatory relationships between alternative splicing events and RNA-binding proteins can

be described by means of the following dynamical system,

dX;(s) M
dls = Zaini(S) - X,(s) + Z buXi(s)-U(s) — d; Xi(s), 1=1,2,....,N, (1)
i =1

dUl(S)
ds

= cwli(s) - Up(s) — dUs(s), 1=1,2,..., M, 2)
k#l

where X;(s) and Uj(s) represent the expression level of alternative splicing event i, i =
1,2,..., N and RNA-binding protein [, [ = 1,2,..., M in breast cancer with pseudotime
progression status s, respectively. Moreover, a;; is the dynamic regulatory coefficient from
alternative splicing event j to alternative splicing event i, where i # j and i,j = 1,2,..., N; by
is the dynamic regulatory coefficient from RNA-binding protein [ to alternative splicing event
i, where © = 1,2,... N and [ = 1,2,..., M; c; is the dynamic regulatory coefficient from
RNA-binding protein k£ to RNA-binding protein [, where [ # k and [,k = 1,2,..., M, and
d; is the self-degradation rate of alternative splicing event i; d] is the self-degradation rate of
RNA-binding protein /.

The details of model assumption and derivative are provided as follows.

Let X;(t,s) and U,(t, s) represent the expression level of alternative splicing event i, i =
1,2,..., N and RNA-binding protein [, [ = 1,2,..., M at time ¢ in breast cancer with pseu-
dotime progression status s, respectively. Assume cancer progression is an irreversible process
over time so that s = ¢(¢) is a strictly monotonic increasing function of ¢, i.e., ©'(t) = 6 > 0.

1 1

As such, s = ¢(t) has an inverse function ¢ = ¢~ '(s) and 3£ = 70 = 5

The change rates of X;(t,s) and Uj(t, s) after a small progression period As can be modeled
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by the following two difference equations:

Xi(p s+ As), s + As) — X(t, s)

As
(3)
—Zaw ;(t,s) +szzX (t,s)-Uplt,s) —d; X;(t,s),
j#i =1
U(o= (s + As), s + As) — Uy(t, s ,
e )AS 2O S i) Uilts) —dU(t ). @

k£l

where a;; is the dynamic regulatory coefficient from alternative splicing event j to alternative
splicing event i, i # j; by is the dynamic regulatory coefficient from RNA-binding protein [ to
alternative splicing event ¢; ¢y, is the dynamic regulatory coefficient from RNA-binding protein
k to RNA-binding protein [, | # k; d; is the self-degradation rate of alternative splicing event
i; and d; is the self-degradation rate of RNA-binding protein /.

As As — 0, we obtain the following progression-structured model in the form of partial

differential equations (PDEs),

0X: (v
2 () = ayXi( i(t,5) +szlX (t,s) - U(t,s) — d: Xi(t,s), (5)
J#i =1
U , U, ,
8_tl ’ (90 1(5)) a—sl = chkUl(t, S) . Uk(t, S) — dlUl(t,S)- (6)
k£l

Since gene regulations or biochemical reactions are notably faster than cancer progression, we

could assume that, in the above equations, X;(¢, s) and U;(t, s) quickly approach its steady-state

9Xi(s) — 0 and AUy (s)

=5 5 = = 0. Therefore, we

X;(s) and Uj(s) as s changes, respectively, that is,
have the following ordinary differential equations (ODEs):

dXz S 8)@ S _ B M - B )
ds( - as,( - ;%Xi(é’) - Xj(s) + lzlqui(s) L Ui(s) — diXi(s), 7
d(‘gis) _ 8%}5) _ ;cmﬁl(s) -Ui(s) — d;Ui(s). ®

For simplicity, when there is no ambiguity, we write X;(s) as X;(s) and Uy(s) as U;(s). (7)

and (8) can therefore be rewritten as

WXl) _§ g x ) + Z baXi(s) - Ui(s) = diXy(s), ©)

ds ,
J#
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dUl<8
ds

) = ZCZkUl(S) - Ui(s) — dyUi(s). (10)
o

Take m + 1 points s; = s(r;) from the smoothed progression trajectory s(r), where r; =

%, 1 =20,1,...,m. We approximate
dXi(se) _ Xilser) — Xi(st)’ dUi(s)) _ Unlsen) — Ul(St)’ (11
ds St+1 — St ds St+1 — St
and denote
Y, = Xi(s¢41) — Xi<5t>, Ty = Ui(si11) — Ul(St)7 (12)

St+1 — St St+1 — St
where s;;; — s; is sufficiently small (since m could be chosen large enough). Therefore, the

above continuous model (i.e., (1) and (2)) can be discretized and rewritten as

M
Y~ Zaini(St) - X(s¢) + Z buXi(st) - Ui(sy) — d; Xi(se), (13)
i =1
Zy & chkUl(St) - Uk(se) — diUi(sy), (14
k£l
where t =0,1,...,m — 1.

We then denote

}/; == (KO)"'?K?ﬁ?"';E,mfl)Ta (15)

Zl = (Zl07 ceey th7 ey Zl,m—l)T7 (16)

Ai = (aﬂ,aig,...,aiN,bﬂ,big,...,biM,—di)T, Qi = 0, (17)

Cl - (CthlZa"')ClMa_dE)T? = 07 (18)

and ) o

XZ(SO)Xl(SO) Xz<31>X1(51) Xz<3mfl)X1(5mfl)
Xi(s0)Xa(s0) Xi(s1)Xa(s1) Xi(8m-1)X2(Sm-1)
Xi(So)XN(So) Xi<31>XN(51) Xi(smfl)XN(Smfl)

X(i) = Xi(SO)Ul(SO) Xi(SI)U1<51) Xi(sm—l)Ul(sm—l) ) (19)
Xz‘(So)U2(So) X¢(81)U2(81) Xi(sm—l)UQ(Sm—l)
Xi(s0)Unm(so) Xi(s1)Um(s1) -+ Xi(Sm—1)Unr(Sm—1)

Xz'<50) Xz'(sl) Xi(sm—l)
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Ui(so)Ui(s0) Ui(s)Ua(s1)) -+ Ui(smo)Ur(smt) |
Ui(s0)Ua(so)  Ui(s1)Us(s1) Ui(8m—-1)Uz(Sm-1)
vl = , (20)
Ul(So)UM(So) Ul(81)UM(81) Ul(smfl)UM<3mfl)
Ui(s0) Up(s1) Ui(Sm-1)

Consequently, (13) and (14) can be transformed into the following linear regression model:

Y, =XDA, +¢, i=12,...,N, (1)
Z=UYC +¢), 1=1,2,...,M, (22)
where €; = (i, €11, .-, €im—1)" and g = (gjg, &7y, ...,€],,_;)" are the random effects. Here,
each i, k =0,1,...,m — 1 is the random disturbance a mean of zero and Cov(g;) = 0?21,
and similarly, each ¢, k =0,1,...,m — 1 is the random disturbance with a mean of zero and

Cov(g}) = 0/ 1.

Now, we use an adapted Bayesian Lasso method to infer the posterior distribution over the
coefficients in each A;. The method of inferring the posterior distribution over the coefficients
in each C is similar, so we will only describe in detail the process of inferring the posterior
distribution over the coefficients in each A;. First, the above assumptions imply that the data

likelihood is

3

0(A;, o2V, XO) = TT o(Ya; X Ay, 02), (23)

t

where t = 0,1,...,m—1, X\ is the t + 1-th row of X® and ¢(Y;;; X\” A;, 62) is the Gaussian

Il
o

probability density with mean Xt(i)Ai and variance o? evaluated at Y.
Then we assume that these prior distributions:

2
9

-, where ); is the

« A;lo?, \; has a Laplace distribution with a mean of 0 and a scale of
shrinkage parameter, which is set to 1. The coefficients are conditionally independent.

o 02 ~IG(A, B), where A and B are the shape and scale, respectively, of an inverse gamma
distribution.

Using Bayes’ rule, we formulate the joint posterior distribution of A; and o7 as follows:

(A, Ul-z\Yi, X(i)) o 7T(A,'|O’i2, Ai) - W(a?) (A, af|)ﬂ-, X(i)). (24)
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Perform Bayesian lasso regression by passing the prior model and data to estimate, that is, by
estimating the posterior distribution of A; and o? (C; and ¢’;). Then we use Markov chain
Monte Carlo (MCMC) algorithm to sample from the posterior. A directed edge from alternative
splicing event j (RNA-binding protein /) to alternative splicing event ¢ could be determined to be
presented if the 95% credible interval (CI) of the parameter estimates of a;; (b;) does not contain
zero, otherwise absent. Similarly, a directed edge from RNA-binding protein £ to RNA-binding
protein [ could be determined to be presented if the 95% credible interval (CI) of the parameter

estimates of ¢;;, does not contain zero, otherwise absent.
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