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MODEL OF RBP-AS EVENT REGULATORY RELATIONSHIPS

As described in [1], sequence-specific RNA-binding proteins bind to pre-mRNA to control

alternative splicing. And each alternative splicing event is controlled by multiple RNA-binding

proteins. Hence, alternative splicing events are dependent on RNA-binding proteins, but not the

other way around. Based on the mass action kinetics [2], [3], [4] and the above priori knowledge,

the regulatory relationships between alternative splicing events and RNA-binding proteins can

be described by means of the following dynamical system,

dXi(s)

ds
=

∑
j 6=i

aijXi(s) ·Xj(s) +
M∑
l=1

bilXi(s) · Ul(s)− diXi(s), i = 1, 2, . . . , N, (1)

dUl(s)

ds
=

∑
k 6=l

clkUl(s) · Uk(s)− d′lUl(s), l = 1, 2, . . . ,M, (2)

where Xi(s) and Ul(s) represent the expression level of alternative splicing event i, i =

1, 2, . . . , N and RNA-binding protein l, l = 1, 2, . . . ,M in breast cancer with pseudotime

progression status s, respectively. Moreover, aij is the dynamic regulatory coefficient from

alternative splicing event j to alternative splicing event i, where i 6= j and i, j = 1, 2, . . . , N ; bil

is the dynamic regulatory coefficient from RNA-binding protein l to alternative splicing event

i, where i = 1, 2, . . . , N and l = 1, 2, . . . ,M ; clk is the dynamic regulatory coefficient from

RNA-binding protein k to RNA-binding protein l, where l 6= k and l, k = 1, 2, . . . ,M , and

di is the self-degradation rate of alternative splicing event i; d′l is the self-degradation rate of

RNA-binding protein l.

The details of model assumption and derivative are provided as follows.

Let Xi(t, s) and Ul(t, s) represent the expression level of alternative splicing event i, i =

1, 2, . . . , N and RNA-binding protein l, l = 1, 2, . . . ,M at time t in breast cancer with pseu-

dotime progression status s, respectively. Assume cancer progression is an irreversible process

over time so that s = ϕ(t) is a strictly monotonic increasing function of t, i.e., ϕ′(t) = δ > 0.

As such, s = ϕ(t) has an inverse function t = ϕ−1(s) and dt
ds

= 1
ϕ′(t)

= 1
δ
.

The change rates of Xi(t, s) and Ul(t, s) after a small progression period ∆s can be modeled
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by the following two difference equations:

Xi(ϕ
−1(s+ ∆s), s+ ∆s)−Xi(t, s)

∆s

=
∑
j 6=i

aijXi(t, s) ·Xj(t, s) +
M∑
l=1

bilXi(t, s) · Ul(t, s)− diXi(t, s),
(3)

Ul(ϕ
−1(s+ ∆s), s+ ∆s)− Ul(t, s)

∆s
=

∑
k 6=l

clkUl(t, s) · Uk(t, s)− d′lUl(t, s), (4)

where aij is the dynamic regulatory coefficient from alternative splicing event j to alternative

splicing event i, i 6= j; bil is the dynamic regulatory coefficient from RNA-binding protein l to

alternative splicing event i; clk is the dynamic regulatory coefficient from RNA-binding protein

k to RNA-binding protein l, l 6= k; di is the self-degradation rate of alternative splicing event

i; and d′l is the self-degradation rate of RNA-binding protein l.

As ∆s → 0, we obtain the following progression-structured model in the form of partial

differential equations (PDEs),

∂Xi

∂t
· (ϕ−1(s))′ +

∂Xi

∂s
=

∑
j 6=i

aijXi(t, s) ·Xj(t, s) +
M∑
l=1

bilXi(t, s) · Ul(t, s)− diXi(t, s), (5)

∂Ul
∂t
· (ϕ−1(s))′ +

∂Ul
∂s

=
∑
k 6=l

clkUl(t, s) · Uk(t, s)− d′lUl(t, s). (6)

Since gene regulations or biochemical reactions are notably faster than cancer progression, we

could assume that, in the above equations, Xi(t, s) and Ul(t, s) quickly approach its steady-state

X̄i(s) and Ūl(s) as s changes, respectively, that is, ∂X̄i(s)
∂t

= 0 and ∂Ūl(s)
∂t

= 0. Therefore, we

have the following ordinary differential equations (ODEs):

dX̄i(s)

ds
=
∂X̄i(s)

∂s
=

∑
j 6=i

aijX̄i(s) · X̄j(s) +
M∑
l=1

bilX̄i(s) · Ūl(s)− diX̄i(s), (7)

dŪl(s)

ds
=
∂Ūl(s)

∂s
=

∑
k 6=l

clkŪl(s) · Ūk(s)− d′lŪl(s). (8)

For simplicity, when there is no ambiguity, we write X̄i(s) as Xi(s) and Ūl(s) as Ul(s). (7)

and (8) can therefore be rewritten as

dXi(s)

ds
=

∑
j 6=i

aijXi(s) ·Xj(s) +
M∑
l=1

bilXi(s) · Ul(s)− diXi(s), (9)
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dUl(s)

ds
=

∑
k 6=l

clkUl(s) · Uk(s)− d′lUl(s). (10)

Take m + 1 points si = s(ri) from the smoothed progression trajectory s(r), where ri =

i
m
, i = 0, 1, . . . ,m. We approximate

dXi(st)

ds
≈ Xi(st+1)−Xi(st)

st+1 − st
,

dUl(st)

ds
≈ Ul(st+1)− Ul(st)

st+1 − st
, (11)

and denote

Yit =
Xi(st+1)−Xi(st)

st+1 − st
, Zlt =

Ul(st+1)− Ul(st)
st+1 − st

, (12)

where st+1 − st is sufficiently small (since m could be chosen large enough). Therefore, the

above continuous model (i.e., (1) and (2)) can be discretized and rewritten as

Yit ≈
∑
j 6=i

aijXi(st) ·Xj(st) +
M∑
l=1

bilXi(st) · Ul(st)− diXi(st), (13)

Zlt ≈
∑
k 6=l

clkUl(st) · Uk(st)− d′lUl(st), (14)

where t = 0, 1, . . . ,m− 1.

We then denote

Yi = (Yi0, . . . , Yit, . . . , Yi,m−1)T, (15)

Zl = (Zl0, . . . , Zlt, . . . , Zl,m−1)T, (16)

Ai = (ai1, ai2, . . . , aiN , bi1, bi2, . . . , biM ,−di)T, aii = 0, (17)

Cl = (cl1, cl2, . . . , clM ,−d′l)T, cll = 0, (18)

and

X(i) =



Xi(s0)X1(s0) Xi(s1)X1(s1) · · · Xi(sm−1)X1(sm−1)

Xi(s0)X2(s0) Xi(s1)X2(s1) · · · Xi(sm−1)X2(sm−1)

· · · · · · · · · · · ·

Xi(s0)XN(s0) Xi(s1)XN(s1) · · · Xi(sm−1)XN(sm−1)

Xi(s0)U1(s0) Xi(s1)U1(s1) · · · Xi(sm−1)U1(sm−1)

Xi(s0)U2(s0) Xi(s1)U2(s1) · · · Xi(sm−1)U2(sm−1)

· · · · · · · · · · · ·

Xi(s0)UM(s0) Xi(s1)UM(s1) · · · Xi(sm−1)UM(sm−1)

Xi(s0) Xi(s1) · · · Xi(sm−1)



T

, (19)
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U (l) =



Ul(s0)U1(s0) Ul(s1)U1(s1) · · · Ul(sm−1)U1(sm−1)

Ul(s0)U2(s0) Ul(s1)U2(s1) · · · Ul(sm−1)U2(sm−1)

· · · · · · · · · · · ·

Ul(s0)UM(s0) Ul(s1)UM(s1) · · · Ul(sm−1)UM(sm−1)

Ul(s0) Ul(s1) · · · Ul(sm−1)



T

. (20)

Consequently, (13) and (14) can be transformed into the following linear regression model:

Yi = X(i)Ai + εi, i = 1, 2, . . . , N, (21)

Zl = U (l)Cl + ε′l, l = 1, 2, . . . ,M, (22)

where εi = (εi0, εi1, . . . , εi,m−1)T and ε′l = (ε′l0, ε
′
l1, . . . , ε

′
l,m−1)T are the random effects. Here,

each εik, k = 0, 1, . . . ,m − 1 is the random disturbance a mean of zero and Cov(εi) = σ2
i Im

and similarly, each ε′lk, k = 0, 1, . . . ,m− 1 is the random disturbance with a mean of zero and

Cov(ε′l) = σ′2l Im.

Now, we use an adapted Bayesian Lasso method to infer the posterior distribution over the

coefficients in each Ai. The method of inferring the posterior distribution over the coefficients

in each Cl is similar, so we will only describe in detail the process of inferring the posterior

distribution over the coefficients in each Ai. First, the above assumptions imply that the data

likelihood is

`(Ai, σ
2
i |Yi, X(i)) =

m−1∏
t=0

φ(Yit;X
(i)
t Ai, σ

2
i ), (23)

where t = 0, 1, . . . ,m−1, X(i)
t is the t+ 1-th row of X(i) and φ(Yit;X

(i)
t Ai, σ

2
i ) is the Gaussian

probability density with mean X(i)
t Ai and variance σ2

i evaluated at Yit.

Then we assume that these prior distributions:

• Ai|σ2
i , λi has a Laplace distribution with a mean of 0 and a scale of σ2

i

λi
, where λi is the

shrinkage parameter, which is set to 1. The coefficients are conditionally independent.

• σ2
i ∼ IG(A,B), where A and B are the shape and scale, respectively, of an inverse gamma

distribution.

Using Bayes’ rule, we formulate the joint posterior distribution of Ai and σ2
i as follows:

π(Ai, σ
2
i |Yi, X(i)) ∝ π(Ai|σ2

i , λi) · π(σ2
i ) · `(Ai, σ2

i |Yi, X(i)). (24)
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Perform Bayesian lasso regression by passing the prior model and data to estimate, that is, by

estimating the posterior distribution of Ai and σ2
i (Cl and σ′2l ). Then we use Markov chain

Monte Carlo (MCMC) algorithm to sample from the posterior. A directed edge from alternative

splicing event j (RNA-binding protein l) to alternative splicing event i could be determined to be

presented if the 95% credible interval (CI) of the parameter estimates of aij (bil) does not contain

zero, otherwise absent. Similarly, a directed edge from RNA-binding protein k to RNA-binding

protein l could be determined to be presented if the 95% credible interval (CI) of the parameter

estimates of clk does not contain zero, otherwise absent.
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