
A Metropolis-cooled MCMC routine

A.1 SEIR likelihood

As stated in Materials and methods, the likelihood for the SEIR model with exponentially-distributed

exposed and infectious lifetimes is

p( tE , tI , tR |β, γ, δ ) ∝ βm−1B(tE , tI , tR)× exp
{
− βA(tE , tI , tR)

}
× · · ·

· · · × δme−δ
∑m
j=1(t

I
j−t

E
j ) × γme−γ

∑m
j=1(t

R
j −t

I
j ).

where m is the final outbreak size (i.e. number of exposure, onset of infectivity and removal events) and

tEκ (below) is the unobserved time of the index exposure

A(tE , tI , tR) =

∫ ∞
tEκ

StIt dt

B(tE , tI , tR) =
∏
i 6=κ

{
ItEi −

}

where ItEi − is the number of infectious hosts immediately before the ith exposure time.

The integral
∫∞
tEκ
StIt dt has an easily computable form, found in [1]

A(tE , tI , tR) =

m∑
j=1

N∑
i=1

{
min (tRj , t

I
i )−min (tIj , t

I
i )
}

where j sums over all exposure events and i sums over the entire host population. This quantity represents

the total susceptible-infectious host contact time throughout the outbreak.

To explain the form of the likelihood, each exposed host, j, contributes terms δe−(Ij−Ej) and γe−(Rj−Ij),

since they spend Exp(δ) and Exp(γ) times in the E and I states, respectively. After exposure, all onsets

of infectiousness and recoveries are observed. Ordering the exposure events, tEκ = tE1 < · · · < tEm, each

exposure except the first also contributes a term

βStEi −ItEi − exp
{
− β

∫ tEi

tEi−1

StIt dt
}

i > 1

since the ith exposure event has hazard βStIt beginning at time Ei−1. Finally, there is the factor

exp
{
− β

∫ max(tR)

tEi

StIt dt
}

representing the probability that no further exposure events occur. Since StE1 −StE2 − . . . StEm− = (N −
1)(N − 2) . . . (N −m+ 1) = constant, these factors are omitted from the likelihood.

A.2 Markov chain Monte Carlo (MCMC)

Since we can write down the posterior density for γ, and within the MCMC routine described in the

Materials and methods, samples of δ and tE do not depend on previous samples of β, the main routine need

only consist in sampling δ and tE and recording these values along with A,B and tEκ . The parameter β can

then be sampled from its full conditional distribution, which given an exponential prior p(β) ∼ Exp(ωβ)

is
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p(β|δ, γ, tE , tI , tR) ∼ Γ(m,A+ ωβ)

Since the full posterior distribution of parameters and exposure times, p(β, δ, γ, tE | tI , tR ) is in-

tractable, we use MCMC methods to sample dependent sequences βi, δi, γi, t
E
i as follows:

We first set initial values for the parameters and exposure times, β0, δ0, γ0, t
E
0 and then, for some

T ≥ 1.0 (the temperature - see below), iterating through the following steps for i = 1, . . . , n:

1. Update δ via Metropolis-Hastings, i.e., propose δ′ ∼ N(δi−1, σ2
δ ) and with probability a1 set δi = δ′,

otherwise δi = δi−1, where

a1 = min

(
1,

fT (δ′, tE |tI , tR)

fT (δi−1, tE |tI , tR)

)
fT is the marginal conditional density for δ, tE at temperature T (see below). The parameter σδ is

tuned during an number of iterations in order to get an acceptance rate of between 20% and 40%.

2. Choose an exposure time to update (with index j) uniformly at random. Propose tE
′
, where

tE
′

k = tEk,i−1 for k 6= j and tIj − tE
′

j ∼ Exp(δi) and with probability a2 set tEj,i = tE
′

j , otherwise set

tEj,i = tEj,(i−1) (all other exposure times are unaltered), where

a2 = min

(
1,

fT (δi, tE
′ |tI , tR)

fT (δi, tE(i−1)|tI , tR)
exp{−δi(tE

′

j − tEj,i)}

)

3. Update β by the Gibbs sampler, i.e. sample from the full conditional distribution βi ∼ Γ(m,A+ωβ).

The above follows a fully-centred parameterisation, as discussed by Neal and Roberts for the SIR

model [1]. Note that there is no need to sample γ as part of the above routine, since having assumed an

exponentially-distributed prior p(γ) = ωγe
−ωγγ , its posterior density is

p(γ|tE , tI , tR) ∝ γme−γ
∑m
j=1(t

R
j −t

I
j ) × e−ωγγ

and therefore

p(γ|tE , tI , tR) ∼ Gamma(m+ 1,

m∑
j=1

(tRj − tIj ) + ωγ)

Due to the high dimensionality of the sample space and the likelihood function perhaps having local

maxima, the sampling chains can sometimes be slow to converge to stationarity and even become stuck

at certain parameter values, with an acceptance ratio going towards zero. Metropolis coupled MCMC, or

(MC)3 [2] is the strategy adopted here to alleviate poor mixing and is summarised as follows: several of

the above chains are run with several closely spaced temperatures 1.0 = T1 < T2 < · · · < Tr. The first

chain, with temperature 1.0, is termed the cold chain and is the only chain from which we obtain samples.

The other chains are known as the heated chains. After performing a fixed number of iterations for each

chain in parallel, two are selected uniformly at random, with temperatures T ′ and T ′′ and current states

X ′ = β′, δ′, tE
′

and X ′′ = β′′, δ′′, tE
′′
. The states are then exchanged with probability a3, where

a3 = min

(
1,
fT1

(X ′′|tI , tR)

fT1(X ′|tI , tR)

fT2
(X ′|tI , tR)

fT2(X ′′|tI , tR)

)
Although the samples from the heated chains are ultimately discarded, the method has the advantage

that is easily parallelised on a multi-core machine. For this work, this was achieved using Python’s multi-

processing module. Six chains were run in parallel with the temperatures T = 1.00, 1.02, 1.04, 1.06, 1.08, 1.10

and exchanges of state were attempted every 400 iterations.
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We can therefore marginalise the posterior density at temperature T , obtaining fT which is, for

p(δ) ∼ Exp(ωδ)

fT (δ, tE |tI , tR) ∝ p( δ, tE | tI , tR )
1
T

∝
{∫ ∫

p( tE , tI , tR |β, δ, γ )p(β)p(δ)p(γ)dβ dγ

} 1
T

∝

∏
i6=κ

{ItEi } (A+ ωβ)
−m × δm exp

{
− δ
( m∑
j=1

(tIj − tEj ) + ωδ

)}
1
T

and for p(δ) ∼ U(0, 10)

fT (δ, tE |tI , tR) ∝

∏
i6=κ

{ItEi } (A+ ωβ)
−m × δm exp

{
− δ

m∑
j=1

(tIj − tEj )
}

1
T

× 1δ∈(0,10).

B Force of infection in Reed-Frost epidemic model

Lotz and Soto in [3] adopt a Reed-Frost model in order to describe transmission of WSD among shrimp

in a controlled experiment in which transmission may either be exclusively direct, via ingestion of dead

infected shrimp, or exclusively environmental, via cohabitation with a live, infected shrimp. Reed-Frost

(see e.g., [4]) is a discrete time model of the numbers of susceptible (St), infected (It) and removed

(Rt) individuals at each of a series of closely spaced time points, separated by a duration ∆t. The

transmission parameter β is the probability of transmission from some particular infected individual

to some other particular susceptible individual during one time step, so that the probability of some

susceptible individual not being infected during one time step is

(1− β)It (1)

and the probability that there is transmission from at least one infected individual to this specified

susceptible is therefore

1− (1− β)It (2)

and the expected number of new infections occuring is

St(1− (1− β)It). (3)

The force of infection is therefore

1− (1− β)It

∆t
≈ βIt

∆t
. (4)

C Estimation of α, ε and ρ for SEIR-P model of WSD in shrimp

C.1 Estimation of pathogen decay rate, ρ

By a challenge experiment in which P. monodon were immersed in sterile seawater that had been spiked

with WSSV a variable number of days prior to immersion, Kumar et.al. were able to estimate how long

a known quantity of WSSV remains viable in seawater under laboratory conditions. Ten experimental

and one control bucket were filled with 10l of sterile seawater. To the experimental buckets pure WSSV
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was added to a final concentration of 1000 virion ml−1, meaning that around 107 particles were present

in each bucket. On days 0 up to 18, 10 juvenile P. monodon were added to one of the unoccupied buckets

and all shrimp were monitored at 8h intervals for mortality or signs of WSSV infection. Dead shrimp

were removed from the buckets and proportions of living shrimp were recorded daily for each bucket.

The authors found that under the conditions of the experiment seawater-borne WSSV remains infective

for up to 12 days.

The plots given in [5, Figure 2] for buckets 0 to 8 indicate similar rates of mortality across these

buckets, suggesting that the WSSV lost little of its infectivity during the first eight days in seawater.

Total mortality occurred at around the four day mark following introduction to the 0 to 8-day buckets.

A reduction in mortality rates is then noticeable following immersion in the 10 day and 12 day buckets,

where 100% mortality was observed each at the 7 day mark (i.e 7 days after immersing the shrimp). No

mortalities occurred following immersion in the 14, 16 and 18 day buckets, at least during the experimental

period, suggesting that the amount of viable WSSV had decayed significantly by 12-14 days in seawater.

Since at 8 days there was still a sufficient quantity of WSSV to inoculate all 10 of the shrimp, we expect

that the mean infectious lifetime a WSSV particle in seawater to be no less than 8 days, giving pathogen

decay rate, ρ, no greater than 0.005 h−1.

C.2 Estimation of environmental transmission rate, α

The second column of Table A contains the time in hours, t100, from immersion to 100% mortality of

shrimp in each of the buckets, labelled by the number of days after the introduction of WSSV to the

bucket that the shrimp were immersed. A lower, order of magnitude, estimate for α (indirect rate of

WSD transmission) can be obtained from the same data by assuming that mortality comes immediately

upon infection (thus underestimating the infectivity) and assuming that the pathogen density remained

at its initial level of 1000 virion ml−1, at least for buckets 0 to 8, where the rates of mortality were similar.

The transmission rate α should be no more than 10/(103 × t100), since 10 exposures occurred in t100

hours, and the rate of new exposures is αP = 103α. These values are in Column 3 of Table A. Similarly,

upper estimates for each bucket by supposing that 100% of the exposures had happened at t100 - 48, i.e.

fixing a period of 2 days between exposure and death for each shrimp since no deaths occurred before

2 days, post-immersion. These are in Column 4. Taking medians, we can say that α is of the order of

10−4 ml virion−1 h−1.

Bucket t100 h αml virion−1 h−1

0 96 1.0× 10−04 2.1× 10−4

2 120 8.3× 10−05 1.4× 10−4

4 96 1.0× 10−04 2.1× 10−4

6 72 1.4× 10−04 4.2× 10−4

8 96 1.0× 10−04 2.1× 10−4

Table A: From graphical plots by Kumar, et.al. ([5, Fig 2]). Buckets are labelled by time in days

between addition of WSSV to bucket and immersion of shrimp. t100 - the time in hours to 100% mortality.

Upper and lower estimates of α are given to 1 decimal place and calculations are described in main body

of text.
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(a) Long-lived (b) Long-lived

(c) Intermediate (d) Intermediate

(e) Short-lived (f) Short-lived

(g) Direct transmission only (h) Direct transmission only

Figure A: Trace plots using R coda package. In the case of long-lived pathogen (b), a restricted prior

was adopted for δ: p(δ) ∼ U(0, 10.0) in order to aid mixing. In all other cases p(β), p(δ) ∼ exp(0.001)

independently. Trace plots show all iterations, including those later discarded for burn in, in order to

demonstrate convergence of two independent chains to stationarity.
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