S1 Appendix. Technical appendix

Data
Data Availability

The policy of the UK HIV Drug Resistance Database is to make DNA sequences available to any
bona fide researcher who submits a scientifically robust proposal, provided data exchange complies
with Information Governance and Data Security Policies in all the relevant countries. This includes
replication of findings from published studies, although the researcher would be encouraged to work
with the main author of the published paper to understand the nuances of the data. Enquiries
should be addressed to iph.hivrdb@ucl.ac.uk in the first instance. More information on the UK
dataset is also available on the UK CHIC homepage: www.ukchic.org.uk. Amino acid sequences are

made available along with a metadata file.

The West and central African dataset is available as supplementary information along with a
metadata file containing HIV subtype, treatment information and known RAM presence/absence

for each sequence.

Predictions made for each sequence of both datasets, by all of the trained classifiers are made
available as part of the supplementary data as well as synthetic results from which the figures of the
paper were drawn. The importance values for each mutation and each trained classifier are also

made available.

All the data and metadata files made available are hosted in the online repository linked to this
project at the following URL:
github.com/lucblassel/HIV-DRM-machine-learning/tree/main/data

Data Preprocessing

For both the African and UK datasets, the sequences were truncated to keep sites 41 to 235 of
the RT protein sequence before encoding. This truncation was needed to avoid the perturbation
to classifier training due to long gappy regions at the beginning and end of the UK RT alignment
caused by shorter sequences. These positions were determined with the Gblocks software [3] with

default parameters, except for the Maximum number of sequences for a flanking position, set to

50,000, and the Allowed gap positions, which was set to ”All”. The encoding was done with the

OneHotEncoder from the category-encoders python module [4].

Classifiers

We used classifier implementations from the scikit-learn python library [5], RandomForestClassifier
for the random forest classifier, MultinomialNB for Naive Bayes and LogisticRegressionCV for

logistic regression.

RandomForestClassifier was used with default parameters except:
e "n_jobs"=4
e '"n_estimators"=5000

LogisticRegressionCV was used with the following parameters:

e "n_jobs"=4
e "cv"=10
e "Cs"=100

e "penalty"=’11’

e "multi_class"=’multinomial’
e "solver"=’saga’

e '"scoring"=’balanced_accuracy’

MultinomialNB was used with default parameters.
For the Fisher exact tests, we used the implementation from the scipy python library [6], and
corrected p-values for multiple testing with the statsmodels python library [7] using the "Bonferroni"

method.

Scoring

To evaluate classifier performance several measures were used. We computed balanced accuracy
instead of classical accuracy, because it can be overly optimistic, especially when assessing a highly

biased classifier on an unbalanced test set [1].The balanced accuracy is computed using the following

formula, where TP and T'N are the number of true positives and true negatives respectively, and

FP and FN are the number of false positives and false negatives respectively:

TP TN
balanced accuracy = 3 <)

TP+FP TNLFN

We also computed adjusted mutual information (AMI). We chose it over mutual information
(MI) because it has an upper bound of 1 for a perfect classifier and is not dependent on the size of
the test set, allowing us to compare the performance for differently sized test sets [2]. The adjusted
mutual information of variables U and V' is defined by the following formula, where M1(U,V) is
the mutual information between variables U and V, H(X) is the entropy of the variable X (= U or
V) and E{MI(U,V)} is the expected MI, as explained in [8].

MI(U,V) - E{MI(U,V)}
SHU)+H(V)| — E{MI(U,V)}

AMI(U,V) =

MI was used to compute the G statistic, which follows the chi-square distribution under the
null hypothesis [9]. This was used to compute p-values for each of our classifiers and assess the

significance of their performance. G is defined by equation below, where IV is the number of samples.

G=2-N-MIUYV)

Finally, to check the probabilistic predictive power of the classifiers we also computed the Brier
score which is the mean squared difference between the ground truth and the predicted probabil-
ity of being of the positive class for every sequence in the test set (therefore lower is better for
this metric). The Brier score is defined in equation below, where p; is the predicted probability

of being of the positive class for sample ¢ and o, is the actual class (0 or 1, 1=positive class) of sample ¢:

N
. 1 2
Brier score = i tg_l(pt —0)

We used the following implementations from the scikit-learn python library [5] with default

options:

balanced_accuracy_score

e mutual_info_score

adjusted mutual_info_score

e brier_score_loss

We used the relative risk to observe the relationship between one of our new mutations and a

binary character X such as treatment status or presence/absence of a known RAM.

prevalence (new mutation | X = 1)

X) =
RR(new, X) prevalence (new mutation | X = 0)
B |(new =1)N (X =1)| B [(new =1)N (X = 0)]
(X =1)] ' I(X =0)|
References

1. Brodersen KH, Ong CS, Stephan KE, Buhmann JM. The Balanced Accuracy and Its Posterior
Distribution. In: 2010 20th International Conference on Pattern Recognition; 2010. p. 3121—

3124.

2. Vinh NX| Epps J, Bailey J. Information Theoretic Measures for Clusterings Comparison:
Variants, Properties, Normalization and Correction for Chance. Journal of Machine Learning

Research. 2010;11:18.

3. Castresana J. Selection of Conserved Blocks from Multiple Alignments for Their
Use in Phylogenetic Analysis. Molecular Biology and Evolution. 2000;17(4):540-552.

doi:10.1093/oxfordjournals.molbev.a026334.

4. McGinnis W, Hbghhy, Tao W, Andrethrill, Siu C, Davison C, et al.. Scikit-Learn-

Contrib/Categorical-Encoding: Release For Zenodo; 2018. Zenodo. doi:10.5281/zenodo.1157110

5. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-Learn:

Machine Learning in Python. Journal of Machine Learning Research. 2011;12(Oct):2825-2830.

. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python. Nature Methods. 2020;17(3):261—
272. doi:10.1038/s41592-019-0686-2.

. Skipper Seabold, Josef Perktold. Statsmodels: Econometric and Statistical Modeling with
Python. In: Stéfan van der Walt, Jarrod Millman, editors. Proceedings of the 9th Python in

Science Conference; 2010. p. 92 — 96.

. Vinh NX, Epps J. A Novel Approach for Automatic Number of Clusters Detection in Microarray
Data Based on Consensus Clustering. In: 2009 Ninth IEEE International Conference on

Bioinformatics and BioEngineering; 2009. p. 84-91.

. Harremoes P. Mutual Information of Contingency Tables and Related Inequalities. In: 2014
IEEE International Symposium on Information Theory. Honolulu, HI, USA: IEEE; 2014. p.
2474-2478.

