S2 Appendix Detailed derivation of p_{c} in Lemma 3. Proof. The proof employs center manifold approach as exhibited in center manifold theorem from Castillo-Chavez and Song [1]. For simplification and understanding of the center manifold theorem it is convenient to transform the model variables of system (1) as follows: $x_{1}=S, x_{2}=E, x_{3}=I, x_{4}=R$ and $N=\sum_{j=1}^{4} x_{j}$. Now letting $X=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{T}$ (T denote transpose) the model system (1) can be written as $\frac{d X}{d t}=F(X)$ where $F=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)^{T}$. Hence we have
$\frac{d x_{1}}{d t}=\Lambda-\frac{\beta c x_{1} x_{3}}{x_{1}+x_{2}+x_{3}+x_{4}}-\mu x_{1}=f_{1}$,
$\frac{d x_{2}}{d t}=\frac{(1-q) \beta c x_{1} x_{3}}{x_{1}+x_{2}+x_{3}+x_{4}}+\frac{(1-\sigma) \theta \beta c x_{3} x_{4}}{x_{1}+x_{2}+x_{3}+x_{4}}-\frac{p \beta c x_{2} x_{3}}{x_{1}+x_{2}+x_{3}+x_{4}}-(\mu+k) x_{2}=f_{2}$,
$\frac{d x_{3}}{d t}=\frac{q \beta c x_{1} x_{3}}{x_{1}+x_{2}+x_{3}+x_{4}}+\frac{\sigma \theta \beta c x_{3} x_{4}}{x_{1}+x_{2}+x_{3}+x_{4}}+\frac{p \beta x_{2} x_{3}}{x_{1}+x_{2}+x_{3}+x_{4}}+k x_{2}-\left(\mu+r+\mu_{d}\right) x_{3}=f_{3}$,
$\frac{d x_{4}}{d t}=r x_{3}-\frac{\theta \beta c x_{3} x_{4}}{x_{1}+x_{2}+x_{3}+x_{4}}-\mu x_{4}=f_{4}$.
Now choosing $\beta c=\tilde{\beta}$ as the bifurcation parameter and considering that at $R_{0}=1, \tilde{\beta}=\beta^{*}=$ $\frac{(\mu+k)\left(\mu+r+\mu_{d}\right)}{(k+\mu q)}$, the Jacobian matrix of the system (1) evaluated at the disease free equilibrium is obtained as

$$
H=\left(\begin{array}{cccc}
-\mu & 0 & \beta^{*} & 0 \\
0 & -(\mu+k) & (1-q) \beta^{*} & 0 \\
0 & k & q \beta^{*}-\left(\mu+r+\mu_{d}\right) & 0 \\
0 & 0 & r & -\mu
\end{array}\right) .
$$

With $\tilde{\beta}=\beta^{*}$ the transformed system (1) has a simple eigenvalue with zero real part and all other eigenvalues are negative (i.e. has a hyperbolic equilibrium point). Thus, we can use the center manifold theory [1] to investigate dynamics of transformed system (1) near $\tilde{\beta}=\beta^{*}$. It is possible to obtain the right eigenvectors of $\left.H\left(P_{0}\right)\right|_{\tilde{\beta}=\beta^{*}}$ which are denoted by $w=\left(w_{1}, w_{2}, w_{3}, w_{4}\right)^{T}$ where

$$
w_{1}=\frac{-\beta^{*} w_{3}}{\mu}, w_{2}=\frac{(1-q) \beta^{*} w_{3}}{(\mu+k)}, w_{4}=\frac{r w_{3}}{\mu}, w_{3}=w_{3}>0 .
$$

Similarly we can obtain the left eigenvectors of $\left.H\left(P_{0}\right)\right|_{\tilde{\beta}=\beta^{*}}$ denoted by $v=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ where

$$
v_{1}=0, v_{2}=\frac{k v_{3}}{\mu+k}, v_{3}=v_{3}>0, v_{4}=0
$$

Now we proceed to obtain the associated bifurcation coefficients, a and b as described in Theorem 4.1 of [1]. For the purpose of clarity we restate Theorem 4.1 of [1].

Theorem 1 (Castillo-Chavez and Song [1].) Consider the following general system of ordinary differential equations with a parameter φ

$$
\begin{equation*}
\frac{d x}{d t}=f(x, \varphi), f: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R} \text { and } f \in \mathbb{C}\left(\mathbb{R}^{n} \times \mathbb{R}\right) \tag{2}
\end{equation*}
$$

where 0 is an equilibrium point of the system (that is, $f(0, \varphi) \equiv 0$ for all φ and assume
A1: $A=D_{x} f(0,0)=\left(\frac{\partial f_{i}}{\partial x_{j}}(0,0)\right)$ is the linearization matrix of the system 2 around the equilibrium 0 with φ evaluated at 0 . Zero is a simple eigenvalue of A and other eigenvalues of A have negative real parts;
A2: Matrix A has a right eigenvector w and a left eigenvector v (each corresponding to the zero eigenvalue).

Let f_{k} be the kth component of f and

$$
\begin{aligned}
a & =\sum_{k, i, j=1}^{n} v_{k} w_{i} w_{j} \frac{\partial^{2} f_{k}}{\partial x_{i} \partial x_{j}}(0,0) \\
b & =\sum_{k, i=1}^{n} v_{k} w_{i} \frac{\partial^{2} f_{k}}{\partial x_{i} \partial \varphi}(0,0)
\end{aligned}
$$

Then, the local dynamics of the system 2 around 0 are determined by the signs of a and b.
(i) $a>0, b>0$. When $\varphi<0$ with $|\varphi| \ll 1,0$ is locally asymptotically stable and there exists a positive unstable equilibrium; when $0<\varphi \ll 1,0$ is unstable and there exists a negative, locally asymptotically stable equilibrium;
(ii) $a<0, b<0$. When $\varphi<0$ with $|\varphi| \ll 10$ is unstable; when $0<\varphi \ll 1,0$ is locally asymptotically stable equilibrium, and there exists a positive unstable equilibrium;
(iii) $a>0, b<0$. When $\varphi<0$ with $|\varphi| \ll 10$ is unstable, and there exists a locally asymptotically stable negative equilibrium; when $0<\varphi \ll 1,0$ is stable, and a positive unstable equilibrium appears;
(iv) $a<0, b>0$. when φ changes from negative to positive, 0 changes its stability from stable to unstable. Correspondingly a negative unstable equilibrium becomes positive and locally asymptotically stable.

In particular, if $a>0$ and $b>0$, then a backward bifurcation occurs at $\varphi=0$.

Computation of a.

The transformed model system (1) has the following non-vanishing partial derivatives of H evaluated at disease free equilibrium,

$$
\begin{aligned}
\frac{\partial^{2} f_{2}}{\partial x_{3} \partial x_{2}} & =-\frac{2(1-q) \beta^{*} \mu}{\Lambda}-\frac{2 p \beta^{*} \mu}{\Lambda}, \frac{\partial^{2} f_{2}}{\partial x_{3} \partial x_{4}}=-\frac{2(1-q) \beta^{*} \mu}{\Lambda}+\frac{2(1-\sigma) \theta \beta^{*} \mu}{\Lambda} \\
\frac{\partial^{2} f_{3}}{\partial x_{2} \partial x_{3}} & =-\frac{-2 q \beta^{*} \mu}{\Lambda}+\frac{2 p \beta^{*} \mu}{\Lambda}, \frac{\partial^{2} f_{3}}{\partial x_{3} \partial x_{4}}=\frac{-2 q \beta^{*} \mu}{\Lambda}+\frac{2 \sigma \theta \beta^{*} \mu}{\Lambda} \\
\frac{\partial^{2} f_{2}}{\partial x_{3} \partial x_{3}} & =\frac{-2(1-q) \beta^{*} \mu}{\Lambda}, \frac{\partial^{2} f_{3}}{\partial x_{3} \partial x_{3}}=\frac{-2 q \beta^{*} \mu}{\Lambda} .
\end{aligned}
$$

Hence,

$$
\begin{align*}
a= & \sum_{k, i, j=1}^{4} v_{k} w_{i} w_{j} \frac{\partial^{2} f_{k}(0,0)}{\partial x_{i} \partial x_{j}} \\
= & v_{2} w_{2} w_{3} \frac{\partial^{2} f_{2}(0,0)}{\partial x_{2} \partial x_{3}}+v_{2} w_{3} w_{4} \frac{\partial^{2} f_{2}(0,0)}{\partial x_{3} \partial x_{4}}+v_{3} w_{2} w_{3} \frac{\partial^{2} f_{3}(0,0)}{\partial x_{2} \partial x_{3}}+v_{3} w_{3} w_{4} \frac{\partial^{2} f_{3}(0,0)}{\partial x_{3} \partial x_{4}} \\
& +v_{2} w_{3} w_{3} \frac{\partial^{2} f_{2}(0,0)}{\partial x_{3} \partial x_{3}}+v_{3} w_{3} w_{3} \frac{\partial^{2} f_{3}(0,0)}{\partial x_{3} \partial x_{3}} \\
= & \frac{2 \mu^{2}(1-q) \beta^{* 2} v_{3} w_{3}^{2}}{\Lambda(\mu+k)}\left(p-(k+\mu q)\left(\frac{\mu(1-q)\left(\mu+r+\mu_{d}\right)+(\mu+r)(k+\mu q)}{\mu^{2}(1-q)\left(\mu+r+\mu_{d}\right)}\right)+\frac{r \theta(k+\sigma \mu)}{\left(\mu+r+\mu_{d}\right) \mu^{2}(1-q)}\right) \tag{3}\\
= & \frac{2 \mu^{2}(1-q) \beta^{* 2} v_{3} w_{3}^{2}}{\Lambda(\mu+k)}\left(p-p_{c}\right) .
\end{align*}
$$

Computation of b.

The sign of bifurcation parameter b is associated with the following non-vanishing partial derivatives of F, also evaluated at disease free equilibrium;

$$
\frac{\partial^{2} f_{2}}{\partial x_{3} \partial \beta^{*}}=(1-q), \frac{\partial^{2} f_{3}}{\partial x_{3} \partial \beta^{*}}=q
$$

Now

$$
\begin{aligned}
b & =\sum_{k, i=1}^{4} v_{k} w_{i} \frac{\partial^{2} f_{k}(0,0)}{\partial x_{i} \partial \beta^{*}} \\
& =v_{2} w_{3} \frac{\partial^{2} f_{2}(0,0)}{\partial x_{3} \partial \beta^{*}}+v_{3} w_{3} \frac{\partial^{2} f_{3}(0,0)}{\partial x_{3} \partial \beta^{*}} \\
& =v_{3} w_{3} \frac{(k+\mu q)}{(\mu+k)}>0 .
\end{aligned}
$$

The eigenvectors v_{3} and w_{3} are positive. The bifurcation coefficient b is always positive. From Theorem 1 the model system (1) will exhibit backward bifurcation phenomena if the bifurcation coefficient a defined by (3) is positive. We can clearly see from (3) that the positivity of a is entirely dependent on the level of exogenous reinfection parameter p. This suggests existence of a bifurcation threshold below which backward bifurcation disappears and above which bi-stability phenomena occurs. After algebraic manipulation it can be shown that the bifurcation coefficient $a>0$ whenever

$$
\begin{aligned}
p>p_{c} & =(k+\mu q)\left(\frac{\mu(1-q)\left(\mu+r+\mu_{d}\right)+(\mu+r)(k+\mu q)}{\mu^{2}(1-q)\left(\mu+r+\mu_{d}\right)}-\frac{r \theta(k+\sigma \mu)}{\mu^{2}(1-q)\left(\mu+r+\mu_{d}\right)}\right) \\
& =\frac{k+\mu q}{\mu(1-q)}\left(\frac{\mu(1-q)\left(\mu+r+\mu_{d}\right)+(\mu+r)(k+\mu q)}{\mu\left(\mu+r+\mu_{d}\right)}-F_{r}\right)
\end{aligned}
$$

where $F_{r}=\frac{r \theta(k+\sigma \mu)}{\mu\left(\mu+r+\mu_{d}\right)}$.

References

[1] Castillo-Chavez C, Song B. Dynamical models of tuberculosis and their applications. Math Biosci Eng. 2004;1(2):361-404.

