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Microarray data normalization

For data sets GSE25644 and GSE25909, microarray data normalization was performed based on mean intensity values using print-tip LOESS as described in Yang et al [1] (implemented in the marray R package version 1.20.0, we use no background subtraction and a window span of 0.4 [2,3]). For dataset GSE4564, the relative expression level of each gene in the mutant strain to the wild type was calculated, normalizing for growth and batch effects, as described in [4,5]. Normalization of data set GSE2324 was already carried out in the Rosetta Resolver database (mean ratio was normalized to zero for the entire array), as described in [6,7].

Statistical analysis of expression profiles






Overall, for different microarrays, we used the same normalization and significance testing methods as described in the original papers and the according P-value cutoffs therein. P-values of gene expression alternation in dataset GSE25644 and GSE25909 were obtained from the limma R package version 2.12.0 [8], after Benjamini-Hochberg FDR correction. Gene expression changes were considered significant when fold change  and  as described in [2,3]. In dataset GSE2324, P-values were calculated after Bonferroni correction. Gene expression changes were considered significant when fold change  and  as described in [7]. In data set GSE4564, the value  (G, R indicate the intensity of green and red signals) was used directly to compute a mean ratio value by the minimum-variance weighted average method [9,10]. The error of the mean ratio was then used to estimate and derive an X score which was further used to represent the confidence level of the averaged measurement [10]. The X score was then used to compute the mean significance ratios (which can be used to estimate the corresponding P-values). Genes were considered significantly changed when as described in [5]. 
To avoid using non-informative training data, we removed from train cases those genes that were not differentially expressed in at least one deletion mutant experiment. Besides, we found that the average expression levels of 10 genes have a significant change between wild type (WT) yeast grown in the YPD and SC mediums, which reflects the background noise. Therefore, we excluded the regulatory genes whose deletion mutant strains result in less than 10 differentially expressed genes (DEGs) when compared to the wild type to be nodes in the inferred networks, since their impact to the transcriptome are less than or equal to a background effect due to routine culture medium differences.

Supplemental Notes
1. A brief introduction of the network-inference methods tested in this work
ARACNE [11] is a method for inferring regulatory networks using the mutual information criterion; the Disruption Network approach [12] builds a regulatory network by linking genetically perturbed TFs with differentially expressed genes and the Jaccard index (JI) approach links node pairs whose JI similarity passed a pre-set cutoff to construct regulatory networks; The WinMine Toolkit [13] is a popular BN inference software developed by Microsoft Research; The Bayesian Information Criterion (BIC) score is a general criterion for selecting statistical models [14] and it has been used to score different Bayesian network structures [15]. The Bayesian Dirichlet equivalence uniform (BDeu) score [16] is another widely used criterion to score Bayesian network structures. It has a tunable parameter, the equivalent sample size (ESS), which could affect the performance of this scoring approach. In our implementation, we employed an iterative approach to set this parameter to its optimal value [17].

2. Comparison of the performance of DM_BN with other BN learning algorithms in predicting causal relationships
We compared the performance of different BN learning algorithms in de novo predicting causal relationships without using a priori regulator-DEG information. In this test, we compared the directed (compelled) edges in the PDAG (inferred by these algorithms without using template) to the regulator-DEG relationships (the default network template used for DM_BN), as although encoded in the same datasets, the transcriptome similarities between deletion mutant strains used by template-free BN learning is an independent dimension of information from the explicit information of individual regulator-target relationships (since the identities (names) of the DEGs in each deletion-mutant experiment are kept blind to the BN algorithms, they could not infer explicit regulator-target relationships directly from data). Furthermore, the relatively large amounts of such relationships made it possible to compare the de novo edge orientation performance of different BN learning algorithms quantitatively and statistically. To measure the precision of edge orientation, we computed the numbers of matched edges considering or not considering edge orientation. Then, the precision of orientation is defined as the ratio of the two numbers and the Binomial test is used to estimate the statistical significance of the consistency of edge orientations with the regulator-DEG relationships.
It is clear that among the four tested BN learning algorithms, the DM_BN algorithm and the BIC scoring approach [14,15] can generally predict correct causal relationships de novo (See Supplemental Note 3 for more discussions), while the precision of edge orientations predicted by the BDeu scoring method [16] or the WinMine toolkit [13] is only marginally better than random coin tossing (Figure S2). Clearly, they are not the top runners for the deletion mutant datasets, although they might be still useful at predicting causal relationships in other application scenarios.

3. High precision prediction of causal relationship by the DM_BN algorithm

Upon a closer look at Figure S2, we can see the precision of edge orientations predicted by the DM_BN algorithm is higher than 80% for all but one parameter setting. Moreover, it is interesting to see that among the networks predicted by DM_BN, the network with the largest number of edges has the highest precision of edge orientation (89.19%, 33 over 37 overlapped edges have correct directionality). As a result, a good strategy to call the DM_BN algorithm might be first executing it at the smallest value of the  parameter (Methods) to obtain a PDAG network with the largest number of edges and then use it to orient the corresponding edges of networks inferred at other parameter settings. In this sense, the DM_BN algorithm has the best performance of predicting edge causality among all the tested BN algorithms.
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