
S1 Appendix. Supplementary Methods

We conduct an additional set of simulations to demonstrate the reliability of the proposed

approximation for summary statistic correlation structures when individual-level data are

not available. First we investigate the difference between the correlation matrix estimated

using individual-level data and the correlation matrix approximated using reference data as

described in “Estimation of Σ with precalculated summary statistics.” We then compare the

difference in p-values when using the two different correlation matrices.

In this set of simulations, genotyping data from the Cancer Genetic Markers of Susceptibil-

ity (CGEMS) breast cancer GWAS is treated as the “original" individual-level data. This

dataset contains 2,287 women of European ancestry who are genotyped at around 550,000

SNPs with the Illumina HumanHap500 array. From the genotype data we randomly create

2,000 different gene sets, each with 10 randomly chosen genes. For each gene set, we then

simulate an outcome according to the model

Yi = α1X1i + α2X2i + α3X3i + α4X4i + α5X5i + β1G1i + ...βsGsi + εi

where i = 1, 2, ..., 2290, s is a random integer between 0 and the square root of the set

size, X1i is distributed as a standard normal random variable, X2i is distributed as a binary

variable with mean parameter 0.5, X3i through X5i are the first three principal components

calculated from the HumanHap500 data, and the error term is distributed as a standard

normal random variable. The effect sizes for the SNPs are β1 = ... = βs = 0.15 and all

other effect sizes are 1. Standard score statistics are calculated for each SNP in the set using

equation (1), and we estimate the correlation matrix using equation (2). The GBJ statistic

and p-value are then calculated for the set. This setup mimics the workflow of a researcher

performing a standard GWAS with individual-level data and creating summary statistics

with two non-genetic covariates (X1i and X2i) and three principal components.
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We next act as if we do not possess the individual-level data and are only given the sum-

mary statistics from the previous step. Using the same approximation procedure described

in the main manuscript, we create three principal components from the European popula-

tion (CEU) of the 1000 Genomes panel and use those PCs along with the CEU genotype

data to approximate the correlation structure in the CGEMS dataset. We then calculate

the GBJ statistic and p-value using the summary statistics and approximated correlation

matrix. This process mimics the workflow that we use for the main analysis of this paper.

We report several different metrics to evaluate the difference between the approximated

correlation matrix and the one calculated using individual-level data. Let ΣCGEMS denote

the correlation matrix calculated using CGEMS individual-level data and equation (2). Let

Σ1000G denote the correlation matrix calculated using the approximation procedure. Let

A = ΣCGEMS − Σ1000G denote the difference of the two matrices, and let ajk denote the

element in the jth row and kth column of A, which is a d× d matrix. For each of the 2,000

A matrices we calculate the matrix L1 norm, which is ||A||L1 = max1≤k≤d
∑d

j=1 |ajk|, and we

divide by d for scale. We also calculate the Frobenius norm, which is ||A||F =
√∑

j,k a
2
jk, and

we divide by d for scale. Finally we calculate the mean and median values of ajk for each A.

S2 Table provides the mean of each of these metrics for all 2,000 simulations. S4 Figure

plots the difference in p-values when using the two different correlation matrices. We see

from S2 Table that the approximation performs very well in general, as the elements of

Σ1000G do not vary much from those of ΣCGEMS. The approximated correlation matrix is

very similar to the matrix estimated using individual-level data at all different levels of sig-

nificance. The p-values are also very similar regardless of which correlation matrix is used,

and this similarity holds across different set sizes and significance levels. The only exceptions

appear to be a handful of p-values calculated at p ≈ 1 · 10−10 using ΣCGEMS that are given
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as p ≈ 1 · 10−12 when using Σ1000G. As explained in the main text, computational limits

sometimes introduce inaccuracies for p-values at this extreme level of significance, which is

why we generally truncate p-values less than p < 1·10−12. However these levels lie far beyond

the typical threshold used for multiple testing correction, minimizing the practical effect of

the difference, which is only observed for a very small percentage of tests. We caution again

against reporting p-values less than 1 · 10−12.
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