
S1 Stability analysis of the model
Consider the system of equations

ṙ1 = α
(
I − r1(t − τ) + εr2 f (r1r2)

)
,

ṙ2 = α
(
I − r2(t − τ) + εr1 f (r1r2)

)
,

(1)

where α = 1
τw

is a time scale, I is a constant input and f (x) = x2

1+x2 . We are mainly interested in
the model dynamics for reference parameter values

I = 0.4, ε = 1.

On the other hand, as the qualitative dynamics of Eqs. (1) does not depend on the magnitude of
α, in the following we assume α = 1.

Looking for steady states we obtain

−r̄1 + ε r̄2 f (r̄1r̄2) = −r̄2 + ε r̄1 f (r̄1r̄2) ,

where (r̄1, r̄2) denotes the steady state. This relation implies

r̄2 − r̄1 = ε (r̄1 − r̄2) f (r̄1r̄2) =⇒ r̄1 = r̄2 = r̄,

as f (x) , −1/ε due to non-negativity of this function. Therefore, the coordinate r̄ satisfies

I = r̄ − ε
r̄5

1 + r̄4 .

Let us consider an auxiliary function defined as gε(r) = r 1+r4(1−ε)
1+r4 , and for the reference ε = 1

this function reduces to g1(r) = r
1+r4 . It is easy to see that g1 is unimodal, g1(0) = 0,

lim
r→∞

g1(r) = 0, and has its maximal value 33/4

4 at r = 3−1/4. This means that there are at most two
steady states, depending on the value of I > 0. On the other hand, if ε , 1, then the derivative
g′ε(r) could have two positive zeros, and therefore there are at most three steady states. For the
reference I = 0.4, let us consider another auxiliary function h(r) = 1 − 0.4r4−r+0.4

r5 . There is
lim
r→∞

h(r) = 1 and lim
r→0

h(r) = −∞. Moreover, h(r) > 0 for r > 0.4 and we can check that h′(r) has

two zeros in the interval (0, 2), around 0.5065858562 (for which there is maximum of h around
3.405131243) and 1.952080163 (for which there is minimum of h around 0.84984565). Hence,
there are at most three steady states, depending on the magnitude of ε.

Corollary 0.1. If ε = 1, then

• for I < 33/4

4 there are two steady states of Eqs. (1);

• for I = 33/4

4 there is exactly one steady state of Eqs. (1);

• for I > 33/4

4 there is no steady state of Eqs. (1).

If I = 0.4, then

• for ε < 0.84984565 and ε ≈ 3.405131243 there is exactly one steady state of Eqs. (1);

• for ε ≈ 0.84984565 and 1 ≤ ε < 3.40513124 there are two steady states of Eqs. (1);
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• for 0.84984565 < ε < 1 there are three steady states of Eqs. (1);

• for ε > 3.405131243 there is no steady state of Eqs. (1).

Remark 0.2. For the reference parameter values ε = 1 and I = 0.4 there are two steady states
of Eqs. (1), around 0.4114655 and 1.1827404.

Looking for local stability of these states for τ = 0 we calculate Jacobi matrix for Eqs. (1)
obtaining

MJ(r1, r2) =

(
−1 + εr2

2 f ′ (r1r2) ε f (r1r2) + εr1r2 f ′ (r1r2)
ε f (r1r2) + εr1r2 f ′ (r1r2) −1 + εr2

1 f ′ (r1r2)

)
,

and for a steady state (r̄, r̄) it reads

MJ (r̄, r̄) =

(
−1 + η β + η
β + η −1 + η

)
,

where η = ε r̄2 f ′
(
r̄2

)
> and β = ε f

(
r2

)
> 0.

We have tr MJ (r̄, r̄) = −2 + 2η and det MJ (r̄, r̄) = 1 − 2η − 2ηβ − β2. Hence, the necessary
condition of stability is η < 1, that is f ′

(
r̄2

)
< 1

ε r̄2 . Moreover, calculating the determinant of the
characteristic equation we easily see that it is always positive, such that any steady state is either
a saddle or a node.

For r̄ ≈ 0.4114655 we have det MJ (r̄, r̄) ≈ 0.7862262548 and tr MJ (r̄, r̄) ≈ −1.891645542,
which means that this point is a stable node. For r̄ ≈ 1.1827404 we have
det MJ (r̄, r̄) ≈ −0.5901784196, which means that this state is a saddle.

Corollary 0.3. For the reference parameter values I = 0.4 and ε = 1 the steady state with
smaller coordinates is a stable node, while the steady state with greater coordinates is a saddle.

Moreover, analyzing the phase space portrait we are able to check that all solutions below the
stable manifold of the saddle are attracted by the stable node, while above this manifold all
solutions go to infinity.

Now we turn to the case τ > 0. We know that if a steady state is a saddle for τ = 0 then it
remains unstable for all τ > 0. Hence, we want to check if stability switches are possible for the
state (r̄, r̄), r̄ ≈ 0.4114655. Calculating the characteristic matrix one gets

∆(λ, τ) =

(
− exp(−λτ) + η − λ β + η

β + η − exp(−λτ) + η − λ

)
.

To get stability switches one needs to find eigenvalues λ = ±iω, ω > 0, in the imaginary axis
and check if they cross this axis.

Let us take λ = iω. Then

det ∆(iω, τ) =
(
− exp(−iωτ) + η − iω

)2
− (β + η)2 =

(
iω + e−iωτ +β

) (
iω + e−iωτ −β − 2η

)
.

It is obvious that det ∆(iω, τ) = 0 iff W1(iω, τ) = iω + e−iωτ +β = 0 or
W2(iω, τ) = iω + e−iωτ −β − 2η = 0. As W1 and W2 are very well know transcendental equations,
we can conclude that

1. if β + 2η < 1, then there are two sequences of critical delays
(
τ1

n

)
for W1 and

(
τ2

n

)
for W2

at which stability switches are possible;

2. if β < 1 and β+ 2η > 1, then there is only one sequence of critical delays corresponding to
W1;

3. if β > 1, then stability switches are not possible.

It occurs that for the reference parameter values I = 0.4 and ε = 1 the first case occurs.
Moreover, we know that for the first critical delay the stable steady state loses stability and
cannot gain it again. This means that we can suspect that solutions of Eqs. (1) oscillates
permanently for sufficiently large delays.
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