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S1A Text

Metagenomic pipeline
Overview
We analyzed whole-genome sequence data from a panel of stool samples from 693 healthy human
subjects (S1 Table). As described in the main text, this panel includes 250 North American
subjects sequenced by the Human Microbiome Project [1, 2], a subset of which were sampled at
2 or 3 timepoints roughly 6-12 months apart. We also included a cohort of 125 pairs of adult
twins from the TwinsUK registry [3], 4 pairs of younger twins from Ref. [4], and 185 Chinese
subjects sequenced in Ref. [5].

Previous work has shown that there is little genomic variability between technical and sample
replicates in HMP data [2, 6], so we merged fastq files for technical and sample replicates from
the same time point to increase coverage to resolve within-host allele frequencies. We analyzed
the gene and SNV content of these samples using the MIDAS software package [v1.2.2 [6]] as a
foundation, with multiple additional layers of filtering implemented in custom postprocessing
scripts, described below. This postprocessing pipeline was designed to be as inclusive as possible
in the early steps, when hard thresholds are required, so that we could adaptively estimate
thresholds from the data to use in later postprocessing steps. Later rounds of postprocessing
impose a set of progressively more conservative filters, which are designed to rule out mapping
artifacts and other metagenomic ambiguities, at the expense of reduced genome and species
coverage. We ultimately apply this pipeline to estimate SNV and gene content changes in species
with sequencing coverage of 20x or more, so our filters are designed with these numbers in mind.

All necessary metadata, as well as the source code for the sequencing pipeline, down-
stream analyses, and figure generation, are available at GitHub (https://github.com/
benjaminhgood/microbiome_evolution).

A.i Estimating a panel of reference species for each host
The first step in the pipeline is to determine which species to include in the personalized reference
panel for each host. The goal is to include as many truly present species as possible (to prevent
their reads from being donated to other reference genomes) while leaving out species that are truly
absent (to prevent their reference genomes from stealing reads from other species). To determine
this set, MIDAS first quantifies the relative abundances of species in different metagenomic
samples by mapping sequencing reads to a database of universal single-copy “marker” gene
sequences for each of the species in the default MIDAS database (version 1.2, downloaded on
November 21, 2016 [6]). We include a species in the reference panel for a given sample if it has
an average marker gene coverage ≥ 3 in that sample. This definition leaves out many species that
are present at lower abundances. We note, however, that their coverage would be too low for them
to be included in our downstream analyses, and any donated reads would add only fractional
contributions to the polymorphism frequencies for species in our target coverage range.

For longitudinally sampled individuals, we defined a single reference panel for each host by
including all species with marker coverage ≥ 3 in at least one timepoint. This choice is designed
to reduce potential mapping artifacts by ensuring that all longitudinal comparisons are performed
with the same mapping parameters.

A.ii Quantifying gene content
We next quantified the gene content for each species present in each sample. In downstream
analyses, gene content information was used to estimate the prevalence of genes in the broader
population, and to quantify gene content differences between QP samples (C.v).
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MIDAS estimates gene copy number for each species by mapping reads to a database of
gene families (or pangenome) constructed from genes in sequenced isolates [6]. This approach
has been adopted in a number of related methods [7, 8], along with similar methods based
on co-occurence or binning [5, 9, 10]. Briefly, pre-computed pangenomes are supplied for
each species in the default MIDAS database, and a host-specific database is constructed by
concatenating pangenomes from each species in the personalized reference panel. Sequencing
reads are aligned to this host-specific database using Bowtie2 [11] with default MIDAS settings
(local alignment, MAPID ≥94.0%, READQ ≥20, and ALN_COV ≥0.75), and the average
coverage is estimated by dividing the total number of mapped reads in a gene family by the total
target size. We note that with these settings, reads with multiple best-hit alignments will be
distributed among these targets according to their proportional representation on the pangenome
reference sequence; these reads were retained to ensure consistent estimates of average coverage
within a gene family, which might contain multiple highly similar genes [6].

For each species, average coverage was reported for each gene, as well as for a panel of
universal, single-copy marker genes [6, 12]. The copynumber of a gene (c) is then estimated
as the ratio between its coverage and the (median) marker gene coverage. We used these raw
copynumber values to estimate the prevalence of genes in the broader population, defined as the
fraction of samples with c ≥ 0.3 (conditioned on the marker coverage being ≥ 5x). Ref. [6] have
previously shown that these thresholds yield accurate gene presence estimates. We then used
these prevalence estimates to define a core genome for each species, defined as the set of genes
with prevalence ≥ 0.9.

In addition to quantifying gene prevalence, we also used MIDAS’s copynumber estimates to
detect changes in gene content between QP samples (C.v). The QP methodology was designed to
eliminate spurious gene content differences that arise from sampling noise, e.g. when a host is
colonized by multiple strains of the same species. However, another well-known limitation of the
pangenome approach used by MIDAS and others is that linkage between a gene and its species is
not observed directly, but is only inferred by the presence of that gene in a previously sequenced
isolate. This can lead to spurious copynumber changes if a target gene is actually linked to
a different species in a particular host, and the relative abundance of the species are simply
changing over time. To guard against this scenario, we implemented a number of additional
filters described below.

First, we only considered gene content differences that were consistent with a single copy
gene transitioning to zero copynumber, or vice versa. We used a permissive definition of potential
single copy genes (0.6 ≤ c ≤ 1.2, with marker coverage ≥ 20x) in order to capture normal
coverage variation along the genome in growing cells [13], see S9 Fig. Similarly, we defined
a zero copynumber to be c ≤ 0.05, so that a small fraction of cells could still retain the gene.
(For simplicity, these copynumber thresholds are also used for the sampling error calculation in
C.v.) We implemented this copynumber restriction because, if a gene is truly linked to a different
species, it is less likely to have both a “normal” and “absent” copynumber by chance. For this to
happen, it would require that the two species that share the gene in a given host (a rare event)
have similar relative abundance at one timepoint and ≥ 10-fold different abundance at the other
(another rare event). Although this approach omits many biologically interesting copynumber
differences among multi-copy genes (e.g. transporter genes in Bacteroides [14]), we do not study
them here because they are much harder to disentangle from mapping artifacts.

To supplement these copynumber filters, we also created a blacklist of genes that are potentially
shared across species. This is helpful for some highly promiscuous genes, e.g. transposons
in Bacteroides [15], where the probability of cross-species sharing cannot be assumed to be
low. We constructed this blacklist by searching for gene families in the MIDAS database that
had sequence similarity ≥ 95% with a gene family in another species (A.iv). These families
constitute a gold standard for gene sharing events, since they imply that highly similar genes
have been observed in isolates from different species. However, this approach can also miss
cases of gene sharing for species with poor phylogenetic coverage in the MIDAS isolate database.
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We therefore supplemented the isolate-based blacklist with gene sharing candidates that were
identified directly from the metagenomic data. In particular, we defined a putatively shared gene
to be one with c ≥ 3 in at least one sample in our cohort, since this could indicate read donating
by a shared gene in a more abundant species. This does not constitute proof of gene sharing, but
it is conservative for the purposes of constructing a blacklist. The metagenomic and isolate-based
methods identified many common gene sharing candidates, but for many species, there were also
many genes that were only identified by one of the two approaches.

All genes in the combined blacklist were excluded from downstream analyses of gene content
estimation and SNV calling. As with our copynumber filters above, this likely omits many
biologically interesting regions of the genome, since shared genes are arguably more likely to
play a role in short-term evolutionary dynamics. We ignore them here in order to minimize false
positives created by read donating.

Even with these various filters, it is important to note that the pangenome approach employed
by us and others is at best an inferential method, which relies on an out-of-sample estimate of
linkage to the correct species background. While we have included these gene content differences
to supplement our SNV-based analysis, isolate sequences [15] or long read data [16] are required
to definitely prove that any specific gene content difference is linked to the species of interest.

A.iii Quantifying SNVs
We next quantified single nucleotide variants (SNVs) for each species in each sample. In
downstream analyses, these calls were used to quantify SNV prevalence across our cohort, to
identify QP samples, and to quantify SNV differences between QP samples.

Similar to our pipeline for identifying gene content, MIDAS uses a standard reference based
approach to identify SNVs in metagenomic data. Briefly, sequencing reads were first aligned
to the host-specific panel of reference genomes using Bowtie2, with default MIDAS mapping
thresholds: global alignment, MAPID ≥94.0%, READQ ≥20, ALN_COV ≥0.75, and MAPQ
≥20. Species were immediately excluded from further analysis if ≤ 40% of the genome (the
typical core genome fraction) recruited any reads; these excluded cases likely correspond to
scenarios where the species is not truly present, but reads from some accessory genes are instead
recruited from a different species. Gene annotations for each reference genome were lifted over
from the PATRIC database [17], and protein coding sites were classified as 1-fold, 2-fold, 3-fold,
or 4-fold degenerate based on the codon reading frame of each annotated gene.

Based on these raw alignments, MIDAS reports the total read coverage D for each site in the
reference genome for each given sample [18]. We used this distribution of coverage across the
genome to obtain a measure of the “typical” coverage, D, defined as the median of all protein
coding sites with nonzero coverage. All samples with D < 5 were excluded from further analyses.
Additional coverage requirements for QP samples are imposed below.

We then used the sample-specific estimates of D to refine the alignment step above, since D
helps to calibrate our expectation for the coverage at a given site in the genome (D). In particular,
sites with D � D could arise due to mapping errors or read donating from less abundant species,
if the reference genome contains regions that are not present in a given sample. Similarly, sites
with D � D could arise from multi-copy genes, or read donating from more abundant species.
To exclude these cases, we masked sites in a given sample if D < 0.3D or D > 3D. This
constitutes a slightly more permissive version of our single-copy criterion above, due to the larger
uncertainties inherent in estimating D. As above, we only considered sites in coding sequences
of annotated genes, and sites that were unmasked in fewer than 4 samples were excluded from all
further analyses.

For each of the retained sites, MIDAS reports reference and alternate allele counts using
samtools mpileup [18]. (In a minority of cases where multiple alternative alleles were present,
these are merged into a single class.) We used these raw allele counts to estimate the prevalence
of SNVs in the broader population, defined as the fraction of samples where the alternate allele
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comprises the majority of reads. Since the reference allele is arbitrarily defined by the choice
of reference genome, we used these prevalence estimates to polarize each SNV based on the
consensus across the cohort. Polarized within-sample allele frequencies were then defined as the
fraction of reads supporting the allele with the lower prevalence across the cohort.

These allele frequencies are used to identify QP samples (C.iii) and to ultimately quantify
SNV differences between QP samples (C.iv). As with the gene content estimates above, these
SNV differences are also susceptible to false positives that occur if the two alleles are actually
linked to different species that are simply fluctuating in abundance. We have implemented a
number of filters to guard against these events.

First, the global alignment and the MAPQ settings in Bowtie2 already ensure that reads must
have a particularly unique match to their assigned reference genome. We only considered sites
in protein coding genes, and we excluded all putatively shared genes in the blacklist above. In
contrast to previous polymorphism- [19] or consensus-based approaches [2, 20], we considered
only extreme changes in allele frequency (≤ 0.2 to ≥ 0.8, or vice versa) to ensure that the SNV
difference is supported by the vast majority of the reads at both timepoints, rather than a fraction
of reads donated from other species. Combined with the coverage requirement in both samples
(0.3D ≤ D ≤ 3D and D ≥ 20), this eliminates most opportunities for SNV differences to arise
from abundance fluctuations: large fluctuations will typically violate the coverage requirement,
while small fluctuations will not produce a sufficient change in allele frequency.

In cases where we compare longitudinal samples from the same host, we imposed an even
stronger version of this filter to be more conservative with respect to calling SNV changes. Under
the reasonable assumption that genome synteny is preserved among very closely related strains,
we expect the relative coverage of a site (D/D) to be more similar in longitudinal samples than
the maximum 10-fold range allowed by the coverage condition (0.3 ≤ D/D ≤ 3). Thus, in
addition to the requirements above, we only called a SNV difference between two samples if the
successive values of D/D were within a factor of 3.

A.iv Identifying orthologous genes in different pangenomes
The species-specific pangenomes in the MIDAS database were constructed by clustering all
genes found in the isolate genomes of each species using a 95% identity threshold [6]. However,
this clustering approach leaves open the possibility that a gene in one species’ pangenome may
have sequence similarity ≥ 95% to a gene in another species’ pangenome. We identified these
cross-pangenome orthologs as follows.

First, for computational efficiency, we focused on human-relevant bacterial species in the
MIDAS database by identifying those isolates with the keywords ’human’ or ’Homo sapiens’ in
the host column of the PATRIC database. We also included species that had a universal single
copy gene marker coverage ≥ 1x in at least one sample in our cohort. This resulted in 1002
human-relevant species.

Next, we ran USEARCH [21] on the set of genes belonging to the pangenomes of these
human-relevant bacterial species. Based on this approach, we identified a total of 890,058 genes
across these 1002 species that had ≥ 95% sequence identity with at least one other gene in a
different species’ pangenome. These genes were excluded from further analysis as described
above.
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S1B Text

Quantifying within-species diversity in individual samples
B.i Estimating rates of core-genome polymorphism
To estimate the overall levels of nucleotide polymorphism for a given species in a given sample
(Fig 1E), we calculate the fraction of synonymous sites in core genes with intermediate allele
frequencies (0.2 ≤ f ≤ 0.8). In other words, the polymorphism rate r is defined by

r = E[θ( f − 0.2) · θ(0.8 − f )] , (S1)

where θ(z) is the Heaviside step function. This measure is similar to the traditional population
genetic measure of heterozygosity, H = E[2 f (1 − f )], which places the most weight near
intermediate allele frequencies. The thresholded version in Eq (S1) is preferable in our case, as it
is more robust to low-frequency sequencing errors that can overwhelm the average in H .

To obtain the approximate confidence intervals for the rates in Fig. 1E, we used a standard
Bayesian procedure based on a poisson approximation. If we let L denote the total number of
sites examined and let n denote the number of “successes” (i.e., the number of intermediate
frequency polymorphisms), then we assume that n is drawn from a Poisson

n ∼ Poisson(rL) , (S2)

where r is the per site rate plotted in Figs. 1E. Since r is a positive quantity that varies over many
orders of magnitude, we use a uniform prior over log r . After applying Bayes’ rule, this yields a
standard conjugate Gamma posterior distribution for r:

p(r |n, L) =
Ln

(n − 1)!
rn−1e−rL . (S3)

whose posterior mean is just ∫
rp(r |n, L) dr =

n
L
, (S4)

as expected. For all n > 0, we define a 1 − α confidence interval to be the α/2 and 1 − α/2
percentiles of this posterior distribution. In the case where n = 0, the posterior distribution is
improper:

p(r |0, L) ∝ r−1e−rL . (S5)

In this case, we define the lower limit of the confidence interval to be 0, and the upper limit to be
the point where e−rL ∼ α/2.

B.ii Within-host evolution in a single-colonization model
In this section, we further explain the assumptions made in computing the expected within-host
polymorphism rate for a given species under a simple, single-colonization model. As described
in the text, we make conservatively high estimates for the per site mutation rate (µ ∼ 10−9

per generation), generation times (λ ∼ 10 generations per day), and time since colonization
(∆t ∼ 100 years). We define the within-host polymorphism rate P as the fraction of fourfold-
degenerate synonymous site mutations with allele frequencies in the range 0.2 ≤ f ≤ 0.8. In the
single-colonization model, the mutations that contribute to P must have reached intermediate
frequencies after starting as a de novo mutation at some time after colonization.

We assume that the synonymous mutations are effectively neutral over the timespans
considered (sλ∆t � 1). Under this assumption, one of these mutations can only contribute
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to P if it hitchhiked along with a lineage that rose to a frequency in the range 0.2 ≤ f ≤ 0.8.
This can happen either due to neutral drift (i.e., the lineage randomly fluctuated to intermediate
frequencies) or selection (i.e., the lineage reached intermediate frequencies because it contains a
beneficial mutation). However, if synonymous mutations are neutral, their presence or absence
in a lineage is independent of the processes that drive it to intermediate frequency [22]. The
probability that a particular neutral mutation arose along the line of descent is simply the product
of the per-site mutation rate µ and the total number of generations since the lineage diverged
from the common ancestor between it and the rest of the population. By assumption, the latter is
bounded by the total number of generations since colonization (λ∆t). This yields the conservative
estimate for the within-host polymorphism rate,

P ≤ µλ∆t ≤ 10−3 , (S6)

quoted in the main text.
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S1C Text

Quasi-phasing metagenomic samples
In this section, we describe the methods used to estimate one of the dominant haplotypes for a
given species in a subset of metagenomic samples (the so-called quasi-phaseable or QP samples),
and to quantify genetic differences between these lineages. The method is similar in spirit to
recent work by Ref. [20], but with a greater emphasis on estimating the associated false positive
rates.

C.i Theoretical motivation
To gain intuition for how within-host lineage structure is reflected in the distribution of allele
frequencies, it is useful to start by considering the simplest version of the phasing problem, in
which the metagenomic reads for a given species in a particular sample are derived one of two
clonal lineages mixed in a proportion fmix ≥ 50% (representing the proportion of cells from
the more abundant lineage). Within-sample polymorphisms will arise from fixed differences
between the two lineages and will segregate at frequency fmix or 1 − fmix, depending on which
lineage the mutation arose in and the choice of reference allele. Since this choice is arbitrary, we
work with the major allele frequency in each sample. In this case, the distribution of major allele
frequencies, p( f ), will then have the simple form

p( f ) = (1 − d) · δ(1 − f ) + d · δ( f − fmix) , (S1)

where d is the average nucleotide divergence between the two lineages and δ(z) is the Dirac
delta function. Note that this theoretical distribution is only obtained in the limit of infinite
coverage; in practice, the observed distribution of major allele frequencies will be blurred due to
sampling noise (see Section C.ii below). Nevertheless, in the the limit of high coverage, Eq (S1)
suggests that we can infer fmix and d by looking for a peak in the distribution of major allele
frequencies (e.g., Fig 1E). Again, in the idealized case, the two haplotype sequences are easy to
recognize: major alleles are assigned to the dominant lineage, while the minor alleles belong to
the subdominant type. This is conceptually similar to the “binning” techniques that are used to
assemble genomes from metagenomic contigs [23].

This basic idea also extends to mixtures of more than two lineages, but the potential
genealogical relationships between them make the problem much more complicated. In these
cases, the traditional “binning” heuristic may no longer apply. For example, in a mixture of
three strains with frequencies f1, f2, and f3, the distribution of major allele frequencies will
now have three characteristic peaks (corresponding tomin{ f i, 1 − f i } for each i = 1, 2, 3). This
time, however, alleles that segregate at the same frequency do not necessarily belong to the
same lineage, since they could also be ancestral to two of the three strains. There are three
possible genealogies relating the three strains, which can vary from site-to-site in the presence of
recombination. Haplotype estimation then becomes a complicated inference problem, which
only grows more difficult as additional lineages are added. Consideration of the combined allele
frequency distribution may be helpful for deriving error models for algorithms that attempt to
deconvolute strains from metagenomes.

Rather than trying to infer the exact mixture proportions and the haplotypes of each lineage,
we developed a set of heuristic rules to identify the haplotype of just one of the dominant lineages
while controlling the probability of misassigning variants to this haplotype. Suppose that there
are within-sample polymorphisms at two sites, with major allele frequencies f1 and f2. We
denote the four (unobserved) two-locus haplotype frequencies by fMM , fMm, fmM , and fmm,
where M and m denote the major and minor allele at each site. If f1 = f2 = 0.5, then there
are no constraints on the possible haplotype frequencies, other than the marginal constraints
fMM + fMm = f1 and fMM + fmM = f2. However, in the opposite extreme where f1 = f2 = 1,
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then normalization constraints require that fMM = 1 (i.e., the major alleles are on the same
haplotype). In between these two extremes there is a more general rule that, whenever the allele
frequencies satisfy f i ≥ f , with log( f /1 − f ) = c & 1, the minimum possible frequency of the
M M haplotype is

fMM ≥ 2 f − 1 ∼ 1 − 2e−c . (S2)

Equation S2 represents a worst case scenario in which the haplotypes are specifically assigned to
prevent major alleles from segregating together. In practice, a more realistic lower bound for the
fMM is attained when the alleles are in linkage equibrium:

fMM = f 2 ∼ 1 − 2e−c , (S3)

which happens to have the same asymptotic behavior in this two-locus example. In either case,
these bounds show that an appreciable fraction of cells in the host must possess both major alleles.

This argument can also be extended to larger collections of sites. In the pessimistic case of
linkage equilibrium between all polymorphic sites, the number of major alleles per individual is
binomially distributed with success probability f . In the limit of a large number of sites, this
means that the vast majority of the cells will have the major allele at a fraction f of the possible
sites. However, while the haplotype consisting of all major alleles is the most likely haplotype
under linkage equilibrium, its expected frequency can grow quite small, to the point where the
haplotype may not even be present in a finite sample. Fortunately, our analysis will primarily
focus on one- and two-locus statistics where the stronger bounds in Eq (S2) can be applied.

C.ii False positive rate for SNV phasing
The arguments above suggest that, for many downstream purposes, we can effectively estimate a
portion of one of the haplotypes in a metegenomic sample by taking the major alleles present
above some threshold freuqency, f ∗ � 50%, and treating sites with intermediate frequencies as
missing data. This is a simple generalization of the consensus method (i.e. taking the haplotype
formed by all major alleles) that has been used in previous metagenomic studies [20,24], and it is
similar to methods used to genotype clonal isolates from whole-genome resequencing data [25].

The major difficulty with this approach is that we do not observe the true frequency f directly,
but rather a sample frequency f̂ that is estimated from a finite number of sequencing reads.
Polarization errors (i.e. errors in determining the major allele) can therefore accumulate when the
allele supported by the most reads differs from true major allele in the sample. When sequencing
clonal isolates, such false positives are primarily caused by sequencing errors. These occur at a
low rate per read (perr ∼ 1% per bp), and become increasingly unlikely at moderate sequencing
depths. However, in a metagenomic sample, polarization errors will also arise due to finite
sampling noise, when an allele at some intermediate frequency (e.g. 25%) happens to be sampled
in a majority of the sequencing reads. As we will show below, for moderate sequencing depths,
this will often be the dominant source of error.

To model this process, let (A`, D` ) denote the number of alternate alleles and total sequencing
depth at a given site ` in the genome, and let f̂` = A`/D` denote the corresponding sample
frequency. We assume that the number of alternate reads follows a binomial distribution,

Pr[A` |D`, f` ] =
(
D`

A`

)
f A` (1 − f )D`−A` , (S4)

for some true frequency f` , so that the probability of observing f̂` ≥ f ∗ is simply

Pr[ f̂` ≥ f ∗ |D`, f` ] =
∑

k≥ f ∗D`

(
D`

k

)
f k (1 − f )D`−k . (S5)
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A polarization error will occur when we observe f̂` ≥ f ∗ even though f` < 50%. Equation (S5)
shows the probability of such an error will strongly depend on f` . For a sequencing depth of
D = 10 and a frequency threshold of f ∗ = 80%, the error probability ranges from essentially
negligible (∼ 10−14) when f is on the order of the sequencing error rate (∼ 1%), to ∼ 1 per
bacterial genome when f ≈ 10%, to an error rate of 5% when f ≈ 50%.

The average false positive rate across the genome will therefore depend on an average over
the possible values of f and D:

Pr[error] =
∫

Pr[ f̂ ≥ f ∗ |D, f ]p0(D, f ) dD df , (S6)

where p0(D, f ) is the prior distribution of D and f at a randomly chosen site (S4 Fig, panel A).
In the absence of any additional information, this joint distribution with the product of empirical
distributions,

p0(D, f ) ≈ p̂(D) p̂( f ) , (S7)

which we estimate for a given sample by binning the observed values of D and the allele
frequencies across the L sites under consideration (blue distribution in S4 Fig, panel A). The
expected number of polarization errors in a given sample across all L sites is given by

Nerr = Pr[error] × L . (S8)

This calculation holds for any large collection of sites where the empirical distribution, p̂( f ),
provides a reasonable approximation to the prior distribution, p0( f ). For example, in the
following section, we consider the set of all synonymous sites in the core genome.

C.iii Quasi-phaseable (QP) samples
The basic idea behind our approach is that we wish to restrict our attention to samples where
Nerr is small compared to the total number of sites under consideration. This number will
vary depending on the particular analysis that we wish to carry out. But for population-genetic
purposes, it will always be related to the number of sites that actually vary between samples. As
a simple proxy for this number, we therefore consider a measure of the average genetic distance
between the dominant haplotype in a given sample and the lineages in the remainder of our panel.

Specifically, we focus on fourfold-degenerate synonymous sites in the core genome. For each
sample, let N< denote the number of such sites with major allele frequencies less than f ∗, and
conversely, let N> denote the number of sites with f̂ ≥ f ∗. For the sites in the latter group, let
f ` denote the corresponding allele frequency across the entire panel. Then the quantity

Nd =

L∑
`=1

(1 − f ` ) (S9)

approximates the expected number of differences at these sites for an “average” individual drawn
from the panel. A normalized version (Nd/L) is illustrated for the B. vulgatus samples in S5 Fig.
We declare the sample to be a quasi-phaseable (QP) sample if it passes the coverage thresholds
in S1A Text and N</Nd < 0.1.

To see why this is a reasonable definition, we return to our error formula in Eq (S8) and plug in
conservative estimates for p0(D, f ). For example, we expect that the number of truly polymorphic
sites in the sample will also be of order ∼ Nd , with the remaining sites having frequencies near
the sequencing error threshold, f ∼ 1%. We then divide the remaining polymorphic sites into
the fraction N</Nd . 0.1 with major allele frequencies below f ∗, and the remaining fraction
(∼ 100%) with major allele frequencies above f ∗. If we make the conservative approximation
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that all of the sites in the latter group have minor allele frequencies f ≈ 1 − f ∗, and all of the
sites in the former group have f ≈ 50%, then we obtain an approximate prior distribution for f :

p̂0( f ) ≈
N> − Nd

N> + N<
δ( f − 0.01) +

Nd

N> + N<
δ( f − 1 + f ∗) +

N<
N> + N<

δ( f − 0.5) . (S10)

If we make a similarly conservative approximation for the coverage distribution,

p̂(D) ≈ δ(D − 10) , (S11)

where δ is the Dirac function, then for a threshold of f ∗ = 80%, the realized false positive rate is

Nerr

Nd
≈

N> − Nd

Nd
Pr[ f̂ ≥ f ∗ |10, 0.01] + Pr[ f̂ ≥ f ∗ |10, 1 − f ∗] +

N<
Nd

Pr[ f̂ ≥ f ∗ |10, 0.5]

. 0.01 .

(S12)

Thus, with these thresholds, we expect that only a small fraction of informative sites (as defined
by the average distance between samples) will be susceptible to polarization errors.

C.iv False positive rate for SNV differences
Although the QP sample classification is a good rule of thumb for determining when polarization
errors are more or less likely to happen, there are scenarios where we wish to measure genetic
distances between samples (e.g. longitudinal samples from the same individual) that are much
more closely related than an average pair of individuals in our panel. In these cases, the realized
false positive rate can be much higher than the estimate in Eq (S12). To obtain more accurate
estimates of the error in these cases, we extend our calculation above to the specific problem of
detecting the number of nucleotide differences between two samples.

Generalizing from the phasing problem above, we would conclude that the haplotypes in
two samples share the same allele at a given site if that allele is present above frequency f ∗ in
both samples. To observe a difference between the two samples, the allele would have to be
present above frequency f ∗ in one sample and below 1 − f ∗ in another. If the allele lies between
1 − f ∗ and f ∗ in one of the samples, the site is treated as censored data. Under this definition, a
nucleotide difference requires a change in allele frequency of at least

∆ f = f ∗ − (1 − f ∗) = 2 f ∗ − 1 . (S13)

If we rewrite everything in terms of ∆ f , a nucleotide difference requires the allele frequency to
lie below (1 − ∆ f )/2 in one sample and above (1 + ∆ f )/2 in another (pink shaded regions in
S4 Fig, panel B). We will adopt the latter notation here, as it allows us to easily consider more
stringent thresholds for which ∆ f > 2 f ∗ − 1.

Under the null hypothesis, we assume that the true allele frequency f is the same in the two
samples. If we let D1 and D2 denote the coverage of the site in the two samples, then a simple
generalization of Eq (S6) shows that the false positive rate for a randomly chosen site is given by

Pr[error] =

∫ {
Pr[ f̂1 ≥ (1 + ∆ f )/2 |D1, f ]

(
1 − Pr[ f̂2 ≥ (1 − ∆ f )/2 |D2, f ]

)
+

(
1 − Pr[ f̂1 ≥ (1 − ∆ f )/2 |D1, f ]

)
Pr[ f̂2 ≥ (1 + ∆ f )/2 |D2, f ]

}

× p0(D1, D2, f ) dD1dD2df ,

(S14)

where Pr[ f̂ ≥ f ] is defined in Eq (S5) and p0(D1, D2, f ) is the prior distribution for D1, D2,
and f at a random site. As in Eq (S7) above, we estimate this prior distribution as a product of
empirical distributions,

p0(D1, D2, f ) ≈ p̂(D1) p̂(D2) p̂( f ) (S15)
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which we estimate by binning the observed values of D1, D2, and f̂ i across the genomes of the
two samples (the blue distribution in S4 Fig, panel B). The expected number of false positive
substitutions is then given by

Nerr = Pr[error] × L . (S16)

where L is the total number of sites compared between the two samples. This will vary depending
on the application (e.g. synonymous sites, sites in core genes, all coding sites, etc. are used at
various times in the main text).

The error estimate in Eq (S16) is an implicit function of the threshold ∆ f . Given the typical
sequencing coverage and allele frequency distributions of the QP samples in our analyses, we
usually obtain sufficiently low error estimates (i.e., Nerr � 1) if we take ∆ f = 1 − 2 f ∗ = 0.6,
so that an allele transitions from less than 20% to greater than 80% frequency between the two
samples, or vice versa. To limit the influence of outliers, we excluded all pairs of samples with
Nerr > max {0.5, 0.1Nobs}, where Nobs is the observed number of SNV differences.

C.v False positive rate for gene content differences
The false positive rate for gene content differences can be estimated with a similar procedure. In
this case, the canonical generative model is one in which a gene g with average copy number per
cell cg,i in sample i recruits Ng,i reads, which we assume follows a Poisson distribution:

Ng,i ∼ Poisson
(
cg,iLgFi

)
, (S17)

where Lg is the length of gene g and Fi is a sample- and species-specific constant that reflects
the total number of reads aligned to that species (e.g., by the MIDAS pipeline). The coverage of
gene g is then defined as

Dg,i =
Lr,i

Lg
· Ng,i ≡

Ng,i

`g,i
, (S18)

where Lr,i is the average length of reads that align to that gene (typically . 100bp), which
can vary in a sample-specific manner. The quantity `g,i ≡ Lg/Lr,i then serves as a conversion
factor between the raw number of reads and the coverage. Finally, we assume (as in the MIDAS
pipeline) that there is a known panel of marker genes (g = m) with fixed copy number per cell of
cm ≈ 1 and a large target size, such that Nm,i ≈ E[Nm,i] = LmFi . This allows us to eliminate Fi

and rewrite Eq (S17) in terms of the marker coverage Dm,i and the coverage-to-read conversion
factor `g,i:

Ng,i ∼ Poisson
(
cg,i`g,iDm,i

)
, (S19)

The variables Ng,i , Dg,i , and Dm,i are all reported by MIDAS, which allowed us to estimate cg,i
and `g,i for each gene in each sample:

cg,i =
Dg,i

Dm,i
, `g,i =

Lg

Lr,i
≈

Ng,i

Dg,i
. (S20)

Based on the above error rate calculations, the gene copy number change events we are interested
in are those in which a gene transitions from a typical single-copy value (0.6 ≤ c ≤ 1.2, see
S9 Fig) in one sample to a value close to zero (c < 0.05) in another. This does not cover all
possible copy number change events, but focuses on the subset that are likely to be (i) statistically
significant and (ii) less susceptible to other bioinformatic errors (e.g. read stealing or donating
from other species), see Section A.ii.
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Given this definition, the probability of an apparent copy number change happening by chance
will again depend on the “true” copy number of the gene, c, as well as its effective coverage, `D.
Similar to Eq (S14), the expected false positive rate for a randomly chosen gene is given by

Pr[error] =

∫ {
FP (0.05`Dm,1; c`Dm,1) [FP (1.2`Dm,2; c`Dm,2) − FP (0.6`Dm,2; c`Dm,2)]

+ [FP (1.2`Dm,1; c`Dm,1) − FP (0.6`Dm,1; c`Dm,1)] FP (0.05`Dm,2; c`Dm,2)
}

× p0(`, c) d` dc ,
(S21)

where FP (k; λ) is the Poisson CDF and p0(`, c) is the null distribution of ` and c. Once again,
we estimate this joint distribution with the product of empirical distributions,

p0(`, c) ≈ p̂(`) p̂(c) , (S22)

which are estimated by binning the observed values of `g,i and cg,i across the two samples.
To reduce mapping artifacts, we only bin `-values from genes with copy number in the range
0.6 ≤ c ≤ 1.2, which accounts for the bulk of the copy number distribution in a given sample
(S9 Fig). The expected number of false positive gene changes is therefore given by

Nerr = Pr[error] × npangenome , (S23)

where npangenome is the total number of genes tested (typically of order ∼ 104). For the typical
coverages in our dataset, this number is usually very small (� 10−2). As above, we excluded all
pairs of samples where Nerr ≤ max {0.5, 0.1Nobs}, where Nobs is the observed number of gene
content differences differences between those samples.

C.vi Validation with synthetic data
As a sanity check on our calculations above, we validated our method using synthetic metagenomic
data generated byGrinder [26]. To simulate the null hypothesis, we generated synthetic sequencing
reads from twoBacteroides vulgatus isolates mixed at a 9:1 ratio at both timepoints. We performed
these simulations for target coverages of 20x, 50x, and 100x. Two replicate simulations were
performed for each coverage value for two difference combinations of isolate genomes, resulting
in 4 independent experiments per coverage group. After running these synthetic metagenomic
samples through the steps of our pipeline, we found zero SNV or gene changes between the two
timepoints for all 12 experiments across the coverage values. This provides further support for
the claim that the false positive rate from sampling error is .0.1 per genome, and it suggests that
this claim is robust to additional noise introduced during the mapping and thresholding steps in
S1A Text.
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S1D Text

Population genetic null model of purifying selection for pair-
wise divergence across hosts
In this section, we present a minimal model of purifying selection that can account for the
varying dN/dS levels in Fig 2D as a function of dS . The basic idea is that purifying selection is
less efficient at purging deleterious mutations that are very young (in particular, younger than
the inverse of the associated fitness cost). To the extent that synonymous divergence can be
associated with a characteristic timescale, this line of reasoning implies that anomalously low
values of dS would be associated with less efficient purifying selection (i.e., higher values of
dN/dS), while typical values of dS would be associated with more efficient purifying selection
(i.e., lower values of dN/dS). Similar ideas have been employed in previous studies [27, 28].

To make this idea more concrete, suppose that the age of a given mutation is bounded by a
time T , so that it occured at some point in the last T generations. This will result in a genetic
difference between two randomly sampled lineages with probability

d = E
[∫ T

0

2N (−t)µ f (0;−t)(1 − f (0;−t)) dt
]
, (S1)

where N (t) is the effective size of the across-host population, and f (t; t0) is the prevalence of
an allele that was created at time t0 and sampled at time t, and the expectation is taken over all
possible realizations of f (t, t0). If T is much smaller than the typical coalescence timescale
across hosts, then the mutation cannot rise to a very high prevalence by the time of sampling, and
we can neglect the f 2 term above to obtain

d(T ) ≈ 2µ

∫ T

0

E[N (−t) f (0,−t)] dt . (S2)

By definition, the newmutation will enter at prevalence 1/N (−t). If the mutation has a deleterious
fitness cost s, then its average size is simply

E[N (−t) f (0,−t)] = e−st , (S3)

and we have

d(T, s) ≈ 2µT ·
1 − e−sT

sT
, (S4)

If synonymous mutations are assumed to be neutral, then

E[dS |T ] = d(T, 0) = 2µT , (S5)

as expected. If we assume that the nonsynonymous sites have a distribution of deleterious fitness
costs ρ(s), then the nonsynonymous divergence rate satisfies

E[dN |T ]
2µT

=

∫
d(T, s)
2µT

ρ(s) =
∫

1 − e−sT

sT
ρ(s) ds . (S6)

In the simplest case, ρ(s) will contain a mixture of truly neutral mutations and a fraction fd with
deleterious fitness cost s, for which

E[dN |T ]
2µT

= (1 − fd) + fd ·
1 − e−sT

sT
. (S7)
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To connect this model with the observed data, we must find a way to estimate T . Motivated by
the fact that E[dS |T ] = 2µT , we assume that for anomalously low core-genome-wide divergence
rates (T � Tc), the method-of-moments estimator T̂ = dS/2µ provides a reasonable estimate
of the maximum mutation age T at most polymorphic loci (otherwise, we would expect a more
typical value of dS). However, a complicating factor is that T is present on both sides of Eq (S7).
Using the same estimator for the x and y axes in Fig 3 can lead to spurious correlations that arise
from measurement noise, which mimic the true biological signal in Eq (S7). To avoid this issue,
we partition the synonymous sites into two artificial categories, which produces two divergence
estimates dS,1 and dS,2. By the Poisson thinning property, these are conditionally independent
given T . Thus, we can use one value of dS to estimate T on the left-hand side of Eq (S7) and
one value of dS to estimate T on the right-hand side of Eq (S7), yielding the empirical relation
between dN , dS,1, and dS,2,

dN

dS,1
≈ (1 − fd) + fd ·

1 − e−
sdS,2
2µ

sdS,2

2µ

, (S8)

which should be valid for dS much smaller than the population median. For small dS , this ratio
will start to deviate from unity when dS & 4µ/s f . At large dS , the ratio approaches 1 − fd , and
will start to deviate from this value when dS . 2µ fd/s(1 − fd). These landmarks allow us to
obtain approximate estimates of fd and s by rough inspection of the data in Fig 3. To obtain the
confidence intervals the inset of Fig 3, we generated bootstrapped datasets by Poisson resampling
the synonymous and nonsynonymous counts between each pair of lineages, and applying the
same thinning procedure as above.

We note that qualitatively similar behavior is expected in recent models of bacterial evolution
proposed by Ref. [29], in which the core genome of closely related strains consists of an
asexual ”backbone” or “clonal frame” (where synonymous mutations occur at rate µ) interrupted
by highly diverged segments of length `r acquired through recombination. The introgressed
segments would enter with low values of dN/dS associated with the average dS value. If the
common ancestor of the asexual backbone is younger than the typical deleterious fitness cost,
we would again expect a transition from essentially neutral behavior (dN/dS ≈ 1) to the typical
between-host value (dN/dS ≈ 0.1) as a function of dS , where the transition is now informative
of the horizontal transfer rate. A formal analysis of this model remains an interesting avenue for
future work.
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S1E Text

Phylogenetic inconsistency and clade structure across hosts
E.i Phylogenetic inconsistency
In this section, we describe the methods used to assess phylogenetic inconsistency in Fig 4A.
Traditionally, phylogenetic consistency is measured by first obtaining a genome-wide estimate of
the genealogical relationships between lineages, and then asking whether individual SNVs can be
explained by a single mutation event on this fixed tree [30, 31]. SNVs that cannot be explained
this way are said to be homoplasic or phylogenetically inconsistent.

The major drawback with this approach is that it requires an accurate estimate of the genome-
wide phylogeny. Statistical uncertainties or model misspecification in the genealogical inference
step can lead to inflated estimates of inconsistency. More importantly, in cases where significant
portions of the genome are phylogenetically inconsistent, it is also difficult to pinpoint the source
of the inconsistencies, since they can bias the genome-wide phylogeny in unknown ways. To
avoid these issues, we developed a non-parametric approach for quantifying the phylogenetic
inconsistency of SNVs directly from the core-genome-wide divergence values in Fig 2, which
eliminates the need to first infer a genome-wide tree.

The idea behind our method is simple. In an infinite sites model, partial information about
the genealogy of an individual SNV is encoded in the allelic states of different individuals. In
particular, all of the individuals with the derived allele must be more closely related to each
other than to individuals with the ancestral allele. Under asexual evolution, the distribution of
coalescence times between pairs of individuals (ti j) also encodes information about the genealogy
at the SNV site. In particular, the descendents of a coalescent event must have smaller values of
ti j among themselves than they do with individuals in other parts of the tree.

To connect these two pieces of information, we note that all individuals that share a mutation
by descent must have coalesced more recently than the age of the mutation. Similarly, individuals
with different allelic states must have coalesced further back in time than the age of the mutation
(otherwise they would share the mutation by descent). This also implies that the minimum ti j for
individuals with different allelic states must be an upper bound on the age of the mutation, and
conversely, the maximum ti j between derived individuals is a lower bound. If this lower bound
exceeds the upper bound, then the SNV is phylogenetically inconsistent (S13 Fig).

To connect this mathematical intuition with the data, we note that the coalescence time is
related to the total divergence through the method-of-moments estimator,

ti j ≈ Cdi j , (S1)

for some species-dependent clock constant C. If we let M denote the set of individuals with the
major allele, and m denote the set of individuals with the minor allele, we can then define a
critical divergence

dB = min
i∈M, j∈m

{
di j

}
, (S2)

which can be used to infer the upper bound on the age of the mutation:

Tmax
m ≈ CdB (S3)

Similarly, we can define a second set of critical divergences for each allele,

dM
W = max

i, j∈M

{
di j

}
, (S4)

dm
W = max

i, j∈m

{
di j

}
. (S5)
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If we knew which allele was the ancestral one, and which was the derived, we could use the
corresponding value of dW to estimate the lower bound on the age of the mutation. Since we do
not have this information, we have to take the minimum of these two values,

dW ≡ min
{
dM
W , dm

W

}
, (S6)

so that

Tmin
m ≈ CdW . (S7)

If the ratio between dW and dB,

dW
dB
≈

Tmin
m

Tmax
m

(S8)

is substantially greater than one, then there is evidence that the SNV is phylogenetically
inconsistent.

To implement this logic in Fig 4A, we chose a threshold divergence d∗B and looked for all
SNVs that occured more recently than this (i.e., those with dB ≤ d∗B) and which had at least
two minor alleles (so that dW is well-defined). We defined the net amount of phylogenetic
inconsistency at d∗B to be the fraction of SNVs in this set with dW ≥ d∗W , for some threshold d∗W .
To be conservative, we chose

d∗W = max
{
2d∗B, 2 × 10

−4
}
, (S9)

which ensures that all inconsistent SNVs have dW ≥ 2dB. The factor of 2 was chosen to match
traditional notions of sequence similarity clusters (or “ecotypes”) [32].

E.ii Clustering and identification of top-level clades
In some species, we observed very high levels of phylogenetic consistency for SNVs that separate
the most distantly related strains, and a sudden transition to high levels of inconsistency for
intermediate levels of divergence. In these species, there is often a second mode in the distribution
of core-genome-divergence at the high end of the spectrum. This suggests that the lineages may
represent a mixture of two genetically isolated populations, e.g. different subspecies or ecotypes.
Given the purely operational species definition used by MIDAS (95% ANI), it is not surprising
that genetically isolated populations can sometimes fall below this species threshold and their
metagenomic reads can map to the same reference genome.

Mixtures of genetically isolated populations can confound traditional SNV-based estimates
of recombination within species, since more SNVs will have accumulated between genetically
isolated populations than within them. To account for these biases, we manually partitioned
each species into a few “top-level” clades, which we hypothesized could better approximate a
genetically cohesive population. Note that this partitioning scheme is conservative for detecting
recombination: subsetting individuals cannot create evidence for recombination where there
is none, but the lack of evidence for recombination could simply indicate that we chose the
clades poorly. Our approach for identifying clades is based on traditional notions of sequence
similarity clusters [32,33], and is similar in spirit to recent work by Ref. [34]. We first constructed
core-genome dendrograms by hierarchically clustering the matrix of pairwise divergence rates
averaged across the core genome, using the UPGMA method from SciPy [35]. Based on these
dendrograms, lineages were assigned to one or more “top-level” clades using a manual procedure,
loosely designed to maximize the difference between inter- and intra-clade divergence at the most
deeply diverged branches (S2 Table). We adopted this manual procedure to capture clade structure
that is inconsistent with a single cut through the dendrogram at a given level of divergence.
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In S14 Fig, we plot the fixation index, Fst for these manually defined clades:

Fst = 1 −

∑
clade,c

∑
i, j∈c di j∑

clade,c
∑

i, j∈c 1

∑
i, j 1∑
i, j di j

, (S10)

where c indexes the clades and di j is the average nucleotide divergence across core genes in hosts
i and j. Several of the prevalent species have top-level clades with high Fst . B. vulgatus serves as
one of the more extreme cases, owing to the fact that the B. vulgatus and B. dorei clades are both
clustered to the B. vulgatus reference genome. However, this is not a universal pattern across
gut bacteria: some species, even other Bacteroides like Bacteroides xylanisolvens, have lineage
phylogenies and recombination patterns that are more consistent with a single clade (Fig 4C).
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S1F Text

Population genetic null model for the decay of linkage disequi-
librium
In principle, the rate of decay of linkage disequilibrium in Fig 4 contains information about
the average recombination rate between pairs of loci [36]. For example, in a neutral panmictic
population of size N , Ref. [37] have shown that

σ2
d =

10 + 2N R
22 + 26N R + 4(N R)2

, (S1)

where R is the recombination rate between two loci. Similar functional forms are expected
for related measures of linkage disequilibrium (e.g. r2 [38]). To obtain a relation between the
recombination rate R and the genomic distance ` between two loci, we assume that recombination
occurs through the exchange of DNA fragments of with average length `r , which are exponentially
distributed around this mean value and occur uniformly across the genome. Two loci undergo a
recombination event when there is a genetic exchange that involves only one of the two loci. This
happens with probability

R(`) = r`r
(
1 − e−`/`r

)
, (S2)

where r is a rate constant. Thus, for distances much shorter than `r , this recombination model
resembles a linear chromosome with a crossover rate r per site. For larger distances, Eq (S2)
shows that the effective recombination rate saturates at r`r . Substituting R(`) into Eq (S1), the
decay of linkage disequilibrium will have the characteristic shape

σ2
d ∼




5
11 if ` � 1

Nr ,
1

2Nr` if 1
Nr � ` � `r ,

1
2Nr`r

if ` � `r .
(S3)

To estimate σ2
d

(`) for a given species, we focused on lineages from the largest top-level
clade defined in S2 Table. Since Fig 2D suggests that evolutionary forces may be different for
closely related strains, we chose only a single lineage from each subclade defined by cutting the
core genome tree at divergence d = 10−3. For pairs of SNVs in the same gene, we assigned a
coordinate distance ` based on their relative position on the reference genome. For a given value
of `, we then estimated σ2

d
(`) via

σ̂2
d (`) =

∑ G( fAB − fA fB)2∑ GfA(1 − fA) fB (1 − fB)
(S4)

where the sum runs over all pairs of synonymous sites with distances within the range (` −
∆`, ` + ∆`), as described in Fig 4. Here, fA = fAb + fAB, and fB = faB + fAB, where fAB,
fAb , and faB denote the frequencies of the gametic combinations in the across-host population.
The hat symbols denote unbiased esimators for the respective quantities underneath, based on
the observed gamete counts nAB, nAb , naB, and nab in our sample of hosts. We assume that the
counts are sampled from the frequencies through the multinomial distribution,

Pr[~n| ~f ] =
n!

nAB!nAb!naB!nab!
f nAB

AB
f nAb

Ab
f naB

aB f nab

ab
, (S5)

where n = nAB + nAb + naB + nab is the total sample size. The estimate for the hat symbols
above are constructed via linear combinations of polynomials in the n’s chosen to have the same
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expected value as the quantity underneath the hat. These expressions are somewhat unwieldy,
but are provided in the associated computer code.

After applying this method, we obtain estimates of within-gene σ2(`) as a function of `,
and a core-genome-wide value estimated from SNVs in different genes (Fig 4), which can be
compared with the theoretical prediction in Eq (S3). Because the core-genome-wide value of σ2

d
is usually much lower than its intragenic counterpart, we assume that `r is much larger than the
∼ 3000bp intragenic window we consider, so we formally set `r = ∞. However, it is also clear
from Fig 4 that σ2

d
(`) does not always approach the neutral expectation as ` → 0. As is common

practice, we therefore consider an expanded class of models of the form

σ2
d (`) = C ·

10 + 2Nr`
22 + 26Nr` + 4(Nr`)2

(S6)

for some arbitrary normalization constant C, which must be jointly estimated from the data.
(The introduction of C is equivalent to focusing on the percentage change in σ2

d
, rather than its

absolute value.)
This model has two free parameters (Nr and C), which can be estimated from the observed

values of σ2
d
at any two values of `. We fix one of these at a reference location `1 = 9bp, which

was chosen to balance the desire to have `1 � 1/Nr, but also to be as large as possible to
minimize contamination from compound mutation events. For the second value of σ2

d
(`), we

focus on distances of the form

`p = min

{
` :

σ2(`)
σ2(`1)

≤ p
}

(S7)

for some fraction p (e.g., p = 1/2, p = 1/4, etc.). In other words, `p is the distance at which the
observed value of σ2(`) first falls to a percentage p of its value at `1. According to the model in
Eq. S6, these distances should satisfy

p ≡
σ2
d

(`p)

σ2
d

(`1)
=

10 + 2Nr`p
22 + 26Nr`p + 4(Nr`p)2

·
22 + 26Nr`1 + 4(Nr`1)2

10 + 2Nr`1
(S8)

which depends only on Nr, in addition to the observed values of p, `1, and `p. Solving this
function numerically, we obtain estimates for Nr for different values of p.

In the neutral model that leads to Eq (S1), the population size N can be estimated from the
average pairwise divergence, dS = 2N µ. Thus, we normalize the estimated values of Nr by dS/2
to obtain an estimate of the ratio r/µ for different values of p. As long as the model is a good
description of the data, these estimates should be approximately independent of the choice of
p. The observed deviations in r/µ as a function of p (S17 Fig) point to fundamental deviations
from the model in Eq (S6) that cannot be accounted for by simply varying the parameters. This
suggests that the decay of σ2

d
(`) may hold power for investigating departures from the simple

neutral model above (e.g. to include hitchhiking, population structure, variation in recombination
rate within genes, etc.).
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S1G Text

Validation of between-host patterns using isolate sequences
A major practical advantage of our metagenomic approach is that it can resolve a large number
of quasi-phased genomes across many species, using data from a much smaller number of host
metagenomes (Fig 1F). These large sample sizes enabled our between-host population genetic
analyses in Fig 2-Fig 4. In principle, many of these analyses could be performed equally well
using traditional isolate-based approaches, in cases where comparably large numbers of isolates
have been sequenced. However, as noted by Ref. [20], there are currently few isolate sequences
available for many of the most prevalent human gut bacteria. To validate our approach, we
therefore repeated our between-host analyses for a subset of species in Fig 1F where larger sample
sizes are available.

We downloaded isolate genomes from the PATRIC database [17] that were annotated as
belonging to one of six bacterial species: Bacteroides vulgatus (n = 26 genomes), Bacteroides
fragilis (n = 109), Parabacteroides distastonis (n = 17) (the above three were downloaded
on May 1, 2018), Eubacterium rectale (n = 50 genomes), Akkermansia muciniphilia (n = 46
genomes), and Faecalibacterium prausnitzii (n = 16 genomes) (the above three were downloaded
on November 14, 2018). Most of the six species studied do not have samples sizes as large
as is available in our metagenomic study. We simulated metagenomic reads from each these
isolate genomes at 100x coverage using the software Grinder [26]. These synthetic metagenomes
therefore constitute simple versions of the QP samples we have analyzed above. We processed
these synthetic metagenomes using the same MIDAS-based pipeline described in S1A Text, and
we repeated our between-host analyses using the same code that we used to analyze the true
metagenomic samples in the main text. The results largely recapitulate our findings in the main
text (S16 Fig), particularly the observation of recombination within genes (compare panel D of
S16 Fig and panel A of S15 FigA). This provides an important validation of our quasi-phasing
approach.

We note, however, that we observe a somewhat larger number of closely related strains among
the B. fragilis and E. rectale isolates than among the quasi-phased samples in Fig 2. The closely
related isolates for B. fragilis could arise from the fact that many of the isolates in the PATRIC
database were collected from a study in the same hospital [39], where they are more likely to
have arisen from the same clonal expansion. A large number of E. rectale isolates come from
the same recent study with no paper available yet to help us identify the source of these isolates.
Additionally, two of the E. rectale isolates are listed as having the same ’ATCC’ id, suggesting
that the same genome was deposited twice in the database. This highlights the benefits of the
large cohort studies that we have utilized (e.g., Refs. [1–3]), which were designed with an eye
toward obtaining a representative random sample from a population.
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S1H Text

Quantifying prevalence of within-host SNV and gene changes
H.i Excess of high-prevalence SNVs
To interpret the SNV prevalence distribution in Fig 5C, we compared the observed data to a null
model of random de novo mutation. In such a model, within-host SNVs are assumed to occur
uniformly along the genome of the resident population. If the resident population is fixed for
the cohort-wide consensus allele, than the derived allele of the within-host sweep will be the
cohort-wide minor allele, whose prevalence we denote by pi . On the other hand, if the resident
population is fixed for the cohort-wide minor allele, than the derived allele of the within-host
sweep will be the cohort-wide consensus, which has prevalence 1 − pi . To a first approximation,
a random resident population can be formed by replacing the consensus genotype at each site
with the cohort wide minor allele with probability p. Thus, under a model of random de novo
mutation, the null distribution of prevalence is given by

f (p) =
1

L

L∑
i=1

[piδ(p − (1 − pi)) + (1 − pi)δ(p − pi)] , (S9)

where δ(·) is the Dirac delta function, and the sum is over all L sites in the genome.
To compare this model with the observed data, we generated null expectations for the

prevalence bins in Fig 5C, using the database of private SNVs to populate the first and last
bins. Different species genomes were weighted according to the number of within-host SNV
differences observed in each species. Under the null hypothesis, the observed counts follow a
multinomial distribution with these expected weights. We quantified deviations from this null
model using the log-likelihood of the observed data as our test statistic:

T ({nk }) = − logΛ({nk }) = −
∑
k

nk log fk , (S10)

where nk denotes the observed number of SNVs in prevalence bin k, and fk denotes the expected
weight in that bin. Significance was assessed numerically by resampling the null distribution for
n = 104 bootstrap iterations, and calculating the fraction of bootstrap samples with T greater
than or equal to the observed value.

Null distributions for the prevalence of gene gains and losses are obtained using a similar
procedure. We assume that de novo mutations cannot produce a gene gain by definition, so we
only consider the distribution of prevalence within the set of gene losses. We assume that random
de novo gene losses occur uniformly throughout the genome of the resident population, and that
a given gene is present in the resident population with probability proportional to its prevalence
pi . The null distribution for gene loss prevalence is therefore given by

f (p) =
∑

i piδ(p − pi)∑
i pi

, (S11)

where the sum is over all genes in a species’ pangenome. The null expectations in Fig 5D are
obtained by summing this null distribution within each prevalence bin, and multiplying by the
same total number of losses.

H.ii Non-uniform distribution of synonymous and nonsynonymous muta-
tions

To quantify the relationship between prevalence and the inferred strength of natural selection,
we examined the differences in the relative fraction of synonymous (4D) and nonsynonymous
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(1D) in the different prevalence bins in Fig 5C. We compared the observed distribution against a
null model prevalence and amino acid impact are independent of each other. The null model is
chosen so that it has the same overall prevalence distribution and fraction of nonsynonymous and
synonymous mutations as the observed data. If we let pn denote the fraction of nonsynonymous
mutations across all prevalence bins, then under the null model, the number of nonsynonymous
mutations in bin k (nn

k
) should be binomially distributed with success probability pn. As above,

we quantified deviations from this model using the log-likelihood as a test statistic,

T ({(nn
k, n

s
k }) = − logΛ{(n

n
k, n

s
k } = −

∑
k

log


(
nn
k
+ ns

k

nn
k

) (
pn

)nn
k (1 − pn)n

s
k


. (S12)

Significance was assessed numerically by resampling the null distribution for n = 104 bootstrap
iterations, and calculating the fraction of bootstrap samples with T greater than or equal to the
observed value.

To demonstrate this result is robust to the choice of prevalence bins, we directly compared the
raw prevalence values of synonymous and nonsynonymous mutations using the Kolmogorov-
Smirnov (KS) test [40]. In particular, we calculated the KS distance D between the empirical
prevalence distributions of synonymous and nonsynonymous mutations (S21 Fig, panel B).
To assess significance, we compared the observed value of D against a null model where the
synonymous and nonsynonymous labels are randomly permuted across the different prevalence
values. We performed n = 104 bootstrap iterations, and calculated a P-value as the fraction of
bootstrap samples with D greater than or equal to the observed value.

H.iii Time-reversal asymmetry
To provide further support for the hypothesis that modification events represent evolutionary
changes, we examined the temporal asymmetry of the prevalence distributions in Fig 5C,D. If
these genetic differences were primarily driven by equilibrium processes like (i) replacement by
extremely closely related strains or (ii) bioinformatic artifacts like read donating described in
S1A Text, then the statistical features of these changes should be independent of the labeling of
the initial and final timepoints. This is a form of local time-reversal symmetry [41].

To see how time-reversal symmetry applies in the context of Fig 5, we note that if we
reverse the intial and final timepoints, then gene gains become gene losses and vice versa, while
their prevalence values (and the overall number of gene changes) are preserved. Similarly, for
within-host SNV differences, reversing the order of time switches the roles of the ancestral and
derived alleles, so that the prevalence of the derived allele switches from p → 1 − p. Thus,
reversing the order of time reflects the distributions in Fig 5C,D across the central axis of
each panel. Time-reversal symmetry therefore requires that these prevalence distributions are
symmetric about this central axis.

We tested for violations of time-reversal symmetry using a Kolmogorov-Smirnov (KS)
procedure [40], similar to the one employed in Section H.ii. For the SNVs in Fig 5C, we
calculated the KS distance D between the observed distribution of (unbinned) prevalence values,
and a corresponding symmetrized version, in which every prevalence value p is duplicated
with its time-reflected value 1 − p (S21 Fig, panel A). To assess significance, we compared
the observed value of D against a null model in which the initial and final timepoints of each
resident population are randomly permuted. We carried out this procedure for n = 104 bootstrap
iterations, and calculated a P-value as the fraction of bootstrap samples with D greater than or
equal to the observed value. We used a similar procedure to test for deviations of time-reversal
symmetry for the gene gains and losses in Fig 5C, except with the KS distance D calculated
using the prevalence distributions of gains and losses (S21 Fig, panel C).

For both SNV and gene changes, we observed significant deviations from the null model
of time-reversal symmetry (P < 10−4 and P ≈ 2 × 10−3, respectively). This suggests that
non-equilibrium process like evolution, rather than simple strain replacement or bioinformatic
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errors, are necessary to explain our observations. Understanding the specific evolutionary
scenarios that can give rise to the asymmetric distributions in Fig 5C,D remains an interesting
topic for future work.
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