
S3 File. Testing on the accuracy of global inference 

 

In this supplementary file, we show the details of evaluation on the accuracy of 

global inference which requires a simultaneous testing on all 𝜔𝑖𝑗’s (or gene pairs) with 

𝐻0: 𝜔𝑖𝑗 = 0  vs. 𝐻1: 𝜔𝑖𝑗 ≠ 0  for 1 ≤ 𝑖 < 𝑗 ≤ 𝑝 . We consider the same three graph 

settings as shown in S2 File: 

 Band graph: a 𝑝  by 𝑝  precision matrix Ω = (𝜔𝑖𝑗)𝑝×𝑝  with 𝜔𝑖,𝑖+1 =

𝜔𝑖+1,𝑖 = 0.6 , 𝜔𝑖,𝑖+2 = 𝜔𝑖+2,𝑖 = 0.3  and the other off-diagonal elements 

𝜔𝑖𝑗 = 0 for |𝑖 − 𝑗| ≥ 3. The diagonal entries of Ω are 𝜔𝑖𝑖 = 1 for 𝑖 =

1,2,3 … , 𝑝. The expected node degree of the graph is 4.  

 E-R graph: we start with an initial 𝑝 by 𝑝 matrix Ω′ = (𝜔𝑖𝑗)𝑝×𝑝 with 

each off-diagonal entry 𝜔𝑖𝑗 = 𝜔𝑗𝑖 = 𝜇𝑖𝑗 ∗ 𝜑𝑖𝑗 , where 𝜇𝑖𝑗  is a uniform 

random variable between 0.4 and 0.8 and 𝜑𝑖𝑗  is a Bernoulli random 

variable (1 means success and 0 means failure) with the success probability 

of min (0.05, 5/𝑝) . The diagonal entries of Ω′  are 𝜔𝑖𝑖 = 1  for 𝑖 =

1,2,3 … , 𝑝. To make the matrix positive definite, the final precision matrix 

is Ω = Ω′ + (|𝜆𝑚𝑖𝑛| + 0.05)𝐼𝑝 , where 𝜆𝑚𝑖𝑛  is the minimum eigenvalue 

of Ω′ and 𝐼𝑝 is a 𝑝 by 𝑝 identity matrix. The expected node degree of 

the graph is 5 for 𝑝 = 5000 or 10000. 

 Scale-free graph: By using the preferential attachment scheme, we start 

with a single node (or gene) and no edges in the first time step. Then, in 

each time step, a new gene is added, and the newly-added gene initiates an 

edge to one of the old genes. An old gene 𝑖  is selected based on the 



probability 𝑝(𝑖)  ∝  𝑑(𝑖)0.01 + 1, where 𝑑(𝑖) is the node degree of gene 

𝑖  in the current time step and 0.01 is the power of the preferential 

attachment. Therefore, the total number of edges in the entire generated 

graph is given by 𝑝 − 1 . The above procedure is achieved by the 

implementation of the function barabasi.game() in the R package igraph. 

Therefore, we generate a 𝑝  by 𝑝  adjacency matrix A = (𝑎𝑖𝑗)𝑝×𝑝  with 

each off-diagonal element 𝑎𝑖𝑗 = 1 if there is a non-zero partial correlation 

between gene 𝑖 and 𝑗; otherwise, 𝑎𝑖𝑗 = 0. The diagonal elements of A are 

all equal to 0. Then, we generate an initial 𝑝 by 𝑝 matrix Ω′ = (𝜔𝑖𝑗)𝑝×𝑝 

and set any off-diagonal element 𝜔𝑖𝑗 = 0.3 if its corresponding 𝑎𝑖𝑗 = 1. 

To make the matrix positive definite, the final precision matrix is Ω = Ω′ +

(|𝜆𝑚𝑖𝑛| + 0.2)𝐼𝑝, where 𝜆𝑚𝑖𝑛 is the minimum eigenvalue of Ω′ and 𝐼𝑝 

is a 𝑝 by 𝑝 identity matrix. The following histograms in Fig. A show that 

the node degree distribution of Scale-free graph for 𝑝 = 5000 and 𝑝 =

10000 follows a power law. 



 

Fig. A. Histograms of node degrees of Scale-free graph. The left plot illustrates the case of 

𝑝 = 5000, and the right plot shows the node degree distribution when 𝑝 = 10000. 

 

As for accuracy metrics, we use false discovery rate (FDR), power and the Matthews 

correlation coefficient (MCC). FDR is the expected proportion of false “discoveries” 

(the number of incorrect rejections on 𝐻0’s) among the total “discoveries” (the total 

number of rejections on 𝐻0’s). We need to control FDR to avoid the inflation of false 

positives through global inference. The details of the FDR procedure can be referred to 

S1 Appendix. As the second measure, the corresponding power is to show to what 

extent that the total number of true non-zero partial correlations can be correctly 

identified through the FDR procedure. Besides FDR and the corresponding power, we 

also consider MCC as the third measure. Here, MCC is used to gauge how well the 

known zero partial correlations and the known non-zero partial correlations can be 

correctly identified through the FDR procedure. It is well known that MCC is even 

robust to class imbalances, so it tailors to our sparse graph settings which have far more 



the zero partial correlations than the non-zero partial correlations. Note that MCC lies 

in the interval between -1 and 1. A value of 1 indicates a perfect selection of all the 

known zero and the non-zero partial correlations, while a value of -1 implies a total 

disagreement between prediction and the true partial correlations. A value of 0 means a 

random guess. Therefore, a closer value of MCC to 1 suggests a better identification of 

the overall zero and non-zero partial correlations.  

For each of the three graph settings, we use the same 100 simulated datasets as 

used in S2 File. When implementing all the approaches, we set the argument alpha = 

0.05 to denote a pre-specified level of 0.05 for FDR control. We further set the argument 

global = TRUE when implementing D-S_NW_SL, D-S_GL and B_NW_SL to include 

global inference. In addition, we customize GFC_L to be implemented among 5 

candidates of tuning parameters for tuning selection. With the 100 simulated data sets 

and the pre-specified level of FDR set at 𝛼 = 0.05, the empirical FDRs of all the graph 

settings for 𝑝 = 5000 and 𝑝 = 10000, the corresponding mean power values and the 

corresponding average MCCs are reported in the following three tables.  

 

Graph 

setting 

Average 

node degree 
𝒑 𝒏 Methods 

FDR 

(0.05 level) 
Power MCC 

 

 

 

 

Band 

3.9988 5000 800 

B_NW_SL 0.0386 1.0000 0.9805 

D-S_NW_SL 0.0024 1.0000 0.9988 

D-S_GL 0.0098 1.0000 0.9951 

GFC_SL 0.0365 1.0000 0.9816 

GFC_L 0.0470 1.0000 0.9762 

3.9994 10000 800 

B_NW_SL 0.0370 1.0000 0.9813 

D-S_NW_SL 0.0021 1.0000 0.9989 

D-S_GL 0.0139 0.9993 0.9927 

GFC_SL 0.0362 1.0000 0.9817 

GFC_L 0.0466 1.0000 0.9764 



 

Graph 

setting 

Average 

node degree 
𝒑 𝒏 Methods 

FDR 

(0.05 level) 
Power MCC 

 

 

 

 

E-R 

5.0356 5000 800 

B_NW_SL 0.0385 0.9236 0.9423 

D-S_NW_SL 0.0093 0.8941 0.9411 

D-S_GL 0.0149 0.9199 0.9519 

GFC_SL 0.0371 0.9156 0.9389 

GFC_L 0.0328 0.9014 0.9337 

4.9704 10000 800 

B_NW_SL 0.0371 0.9211 0.9417 

D-S_NW_SL 0.0078 0.8874 0.9383 

D-S_GL 0.0122 0.9105 0.9483 

GFC_SL 0.0371 0.9129 0.9375 

GFC_L 0.0325 0.8962 0.9311 

 

Graph 

setting 

Average 

node degree 
𝒑 𝒏 Methods 

FDR 

(0.05 level) 
Power MCC 

 

 

 

 

Scale-

free 

1.9996 5000 800 

B_NW_SL 0.0361 0.9367 0.9502 

D-S_NW_SL 0.0296 0.9334 0.9517 

D-S_GL 0.0234 0.9310 0.9535 

GFC_SL 0.0438 0.9424 0.9493 

GFC_L 0.0454 0.9472 0.9509 

1.9998 10000 800 

B_NW_SL 0.0341 0.8809 0.9224 

D-S_NW_SL 0.0293 0.8761 0.9222 

D-S_GL 0.0251 0.8739 0.9230 

GFC_SL 0.0445 0.8929 0.9237 

GFC_L 0.0454 0.8986 0.9262 

 

As we can see, the FDRs of all the methods for the three graph settings are 

effectively controlled below the desired 0.05 level for both 𝑝 = 5000  and 𝑝 =

10000. In terms of Band graph, almost all the power values are 1 such that the non-

zero partial correlations can be correctly identified under the well-controlled FDRs.  

MCCs of all the methods are close to 1, indicating a near-perfect identification of the 

overall zero and non-zero partial correlations. For E-R graph, all the approaches have 

comparable results of power and MCC, and the performance of B_NW_SL is slightly 



better considering both power and MCC. Similarly, the results of power and MCC of 

all the methods are also very close for Scale-free graph, and the performance of GFC_L 

is slightly better according to power and MCC. Even though the overall results are 

slightly worse for E-R graph and Scale-free graph due to their far more randomized 

structures than Band graph, all the methods still show high values of power and MCC 

even in the cases of 𝑝 = 10000. When 𝑝 = 10000, all the power values are around 

0.90, and the MCCs are about 0.95 for E-R graph. For Scale-free graph, the power 

values of all the methods are almost 0.90, and the MCCs are still more than 0.92. 

Among the three graph settings, even though the FDRs of D-S_NW_SL and D-S_GL 

are controlled more conservatively below the desired level, their power values and 

MCCs do not suffer a noticeably negative impact, and some results are even better 

compared to the other approaches in some particular settings. Therefore, all the 

approaches have shown good performance in correctly identifying the zero and the non-

zero partial correlations in a global sense even for the very high-dimensional scenarios. 

In addition, we have also clarified the mean numbers of false positives (incorrect 

rejections on the true 𝐻0’s) of each approach and the corresponding mean false positive 

rates (the proportions of false positives among the true 𝐻0 ’s) in the previous 

benchmarking with the FDR procedure in the following three tables based on the 100 

replications. We can see from the tables that all the false positive rates are close to 0. In 

other words, the observed false positive numbers are acceptable given the huge number 

of true negatives (true 𝐻0’s). 

 



 

Graph 

setting 

Average 

node degree 
𝒑 𝒏 Methods 

Number of false 

positives 

False positive 

rate 

 

 

 

 

Band 

3.9988 5000 800 

B_NW_SL 401.8 3.2 × 10−5 

D-S_NW_SL 24.1 1.9 × 10−6 

D-S_GL 98.7 7.9 × 10−6 

GFC_SL 378.7 3.0 × 10−5 

GFC_L 493.3 4.0 × 10−5 

3.9994 10000 800 

B_NW_SL 768.7 1.5 × 10−5 

D-S_NW_SL 42.3 8.5 × 10−7 

D-S_GL 282.5 5.7 × 10−6 

GFC_SL 751.8 1.5 × 10−5 

GFC_L 976.5 2.0 × 10−5 

 

Graph 

setting 

Average 

node degree 
𝒑 𝒏 Methods 

Number of false 

positives 

False positive 

rate 

 

 

 

 

E-R 

5.0356 5000 800 

B_NW_SL 466.1 3.7 × 10−5 

D-S_NW_SL 105.3 8.4 × 10−6 

D-S_GL 175.0 1.4 × 10−5 

GFC_SL 443.6 3.6 × 10−5 

GFC_L 384.6 3.1 × 10−5 

4.9704 10000 800 

B_NW_SL 882.1 1.8 × 10−5 

D-S_NW_SL 172.7 3.5 × 10−6 

D-S_GL 278.7 5.6 × 10−6 

GFC_SL 875.0 1.8 × 10−5 

GFC_L 748.9 1.5 × 10−5 

 

Graph 

setting 

Average 

node degree 
𝒑 𝒏 Methods 

Number of false 

positives 

False positive 

rate  

 

 

 

 

Scale 

-free 

1.9996 5000 800 

B_NW_SL 175.5 1.4 × 10−5 

D-S_NW_SL 142.2 1.1 × 10−5 

D-S_GL 111.6 9.0 × 10−6 

GFC_SL 215.7 1.7 × 10−5 

GFC_L 225.1 1.8 × 10−5 

1.9998 10000 800 

B_NW_SL 311.4 6.3 × 10−6 

D-S_NW_SL 264.4 5.3 × 10−6 

D-S_GL 225.1 4.5 × 10−6 

GFC_SL 415.6 8.3 × 10−6 

GFC_L 427.4 8.6 × 10−6 

 


