
Supplementary Information: Population dynamics of engineered

underdominance and killer-rescue gene drives in the control of dengue

vectors

Matthew P. Edgington and Luke S. Alphey

The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK

1 Modelling

Within the main text we outline the key details of the mathematical models used throughout

this work. Here we present some extra details necessary to reproduce the results of this study.

We begin with the vi(t − τ) and wi(t − τ) expressions that are omitted from the main text for

brevity. These expressions represent the outcomes from each possible genotype mating pair and

are grouped according to the genotypes of their resulting progeny. For example, the expression

used to represent all genotype mating pairs resulting in wild-type progeny is of the form

v1(t− τ) =
1

N(t− τ)

[

M1(t− τ)F1(t− τ) +
1

2
M1(t− τ)F2(t− τ) +

1

2
M1(t− τ)F4(t− τ) (S1)

+
1

4
M1(t− τ)F5(t− τ) +

1

2
M2(t− τ)F1(t− τ) +

1

4
M2(t− τ)F2(t− τ) +

1

4
M2(t− τ)F4(t− τ)

+
1

8
M2(t− τ)F5(t− τ) +

1

2
M4(t− τ)F1(t− τ) +

1

4
M4(t− τ)F2(t− τ) +

1

4
M4(t− τ)F4(t− τ)

+
1

8
M4(t− τ)F5(t− τ) +

1

4
M5(t− τ)F1(t− τ) +

1

8
M5(t− τ)F2(t− τ) +

1

8
M5(t− τ)F4(t− τ)

+
1

16
M5(t− τ)F5(t− τ)

]

,

where N denotes the total number of mosquitoes within a population; Mi and Fi (where i = 1, ..., 9)

represent the number of male and female mosquitoes of genotype i; t represents the current time

within a simulation; and τ represents the egg to adult developmental delay time. The remaining vi

expressions are of the same form as Eq (S1) with the contents of the square brackets representing

the entries in the i-th genotype column in S1 Table. Note that the expressions for wi are the same

as those for vi but with Mi(t− τ) variables swapped for Fi(t− τ) and vice versa.

A number of times within the main text we refer to the consideration of given release ratios

1



- usually 1:1 (introduced:wild). This represents the ratio of introduced mosquitoes (only release

of genotype AABB (i.e. i = 9) considered within this work) to the wild population at the time

of the release. In order to implement this within the mathematical model we assume that the

wild population size is in equilibrium at the time of release (as defined by Eq (14) of the main

text). In some situations it may be necessary to consider alternative release ratios, for example

the 10:1 (introduced:wild) release ratio considered in S6 Fig and S8 Fig. This may be achieved by

considering a set of initial conditions of the form

M1(0) =
N∗

2
, M2−8(0) = 0, M9(0) = θ

N∗

2
, F1(0) =

N∗

2
, F2−8(0) = 0, F9(0) = θ

N∗

2
, (S2)

where θ is the release ratio parameter which sets a release ratio of θ:1 (introduced:wild) and must be

chosen such that θ ≥ 0 in order to be biologically realistic. We also consider here initial conditions

covering the duration of the developmental delay time. These take the form

M1(t) =
N∗

2
, M2−9(t) = 0, F1(t) =

N∗

2
, F2−9(t) = 0, (S3)

and apply over the time period τ ≤ t < 0.

Finally, in main text Fig 1 and S4 Fig results are presented in terms of relevant genotype fre-

quencies for each system since this can be simpler to visualise and understand than the evolution of

each individual genotype. Due to the differences between the engineered underdominance (UD) [1]

and killer-rescue (KR) [2] systems considered here it is necessary to consider a different frequency

for each. For the UD system both transgenic constructs carry the cargo (refractory) gene and so

we consider the overall transgene frequency, calculated as

Transgene Freq. =
1

4
(G2 +G4) +

1

2
(G3 +G5 +G7) +

3

4
(G6 +G8) +G9

∑

9

i=1
Gi

. (S4)

This differs from the killer-rescue system for which only the rescue transgene contains the cargo

(refractory) gene. As such, for this system we are only interested in the frequency of the rescue

2



transgene which is calculated as

Rescue Freq. =
1

2
(G2 +G5 +G8) +G3 +G6 +G9

∑

9

i=1
Gi

. (S5)

Note that within these expressions numbers of males and females of each genotype have been

summed according to Gi(t) = Mi(t) + Fi(t).

2 Variation in results is likely caused by numerical error

Figs 6 and 7 of the main text display results of numerical simulations created for the UD and

KR systems over the whole range of possible relative fitness parameters (0 ≤ ǫA, ǫB ≤ 1) and a

selection of different initial population sizes. As mentioned in the main text, upon close inspection

it can be seen that there are small differences between the results from the individual data sets and

the randomly selected example data set. Further examination of these results suggests that the

deviations are due to differences in the numerical errors present in each set of numerical results.

Plots showing results that support this notion are given in S1 Fig.

These results display a number of characteristics that lead us to conclude that the observed

deviations from the randomly chosen example case are caused by numerical error. Firstly, the data

collections for each initial population size required that different maximum time steps (‘MaxStep’)

were used as options in MATLAB (The MathWorks Inc., Natick, MA) delay differential equation

solver dde23 [3] in order to produce results such as those in S3 Fig. This is because the ‘surf’

plotting command in MATLAB requires that, to connect results from individual simulations as

a surface, they all consist of the same number of time points. To ensure that this was the case

for each data set collected we utilise three different ‘MaxStep’ parameters for both UD and KR

simulations which are

• MaxStep=0.1 (for α = 0.7, 0.2, 0.07 and 0.02);

• MaxStep=0.05 (for α = 0.007 and 0.002); and

• MaxStep=0.025 (for α = 0.0007 and 0.0002).

3



Since we utilise three different ‘MaxStep’ parameters during the collection of data sets, it appears

likely that these correspond to the three distinct error lines in S1 Fig. Thus, we propose here that

the reason for the existence of just three error lines is that there are only differences between cases

that utilise different ‘MaxStep’ parameters. It is also the case that those examples which used

smaller ‘MaxStep’ parameters displayed the largest results for the maximum degree of population

suppression in both the UD and KR systems. This is likely due to the fact that a smaller ‘MaxStep’

means that the simulation would capture a data point closer to the actual minimum whereas the

larger ‘MaxStep’ parameters may result in simulations with consecutive time steps lying further

from the absolute minimum. S2 Fig shows an example of how such a numerical error could be

produced through the use of differing ‘MaxStep’ values.

Another feature that suggests these differences are due to numerical error is the very small

absolute size of deviations from the randomly chosen example simulation and between data sets. In

particular, S1 Fig shows maximal absolute errors between data sets of∼ 1.3×10−5 and∼ 2.25×10−4

for the cases with early- and late-acting fitness/lethal effects, respectively. In addition to the fact

that the sizes of variations between data sets are consistent with what we would expect from Matlab

solver dde23, we chose an optional relative error tolerance (‘RelTol’) parameter equal to 10−5. The

use of such a relative error tolerance parameter could also explain why we see greater variation

between the data sets in cases with late-acting rather than early-acting fitness/lethal effects (i.e.

since the late-acting examples display larger absolute changes over a single time step, the relative

error tolerance would allow for larger errors in results and thus between data sets).

References

[1] S. Davis, N. Bax, and P. Grewe. Engineered underdominance allows efficient and economical introgression of

traits into pest populations. Journal of Theoretical Biology, 212(1):83–98, 2001.

[2] F. Gould, Y. Huang, M. Legros, and A.L. Lloyd. A Killer–Rescue system for self-limiting gene drive of anti-

pathogen constructs. Proceedings of the Royal Society of London B: Biological Sciences, 275(1653):2823–2829,

2008.

[3] L.F. Shampine and S. Thompson. Solving DDEs in MATLAB. Applied Numerical Mathematics, 37(4):441–458,

2001.

4


