S2 Appendix Detailed derivation of p. in Lemma 3. Proof. The proof employs center
manifold approach as exhibited in center manifold theorem from Castillo-Chavez and Song [1]. For
simplification and understanding of the center manifold theorem it is convenient to transform the

model variables of system (1) as follows: 3 = S,20 = E,23 = [,z4 = R and N = 2?21 xj.
Now letting X = (w1, 22,23,74)7 (T denote transpose) the model system (1) can be written as
dX
i F(X) where F = (f1, fa, f3, f2)T. Hence we have
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Now choosing ¢ = B as the bifurcation parameter and considering that at Ry = 1, B = p* =
(L + k) (p+ 7+ pa)

(k + nq)
is obtained as

, the Jacobian matrix of the system (1) evaluated at the disease free equilibrium
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With 8 = B* the transformed system (1) has a simple eigenvalue with zero real part and all other
eigenvalues are negative (i.e. has a hyperbolic equilibrium point). Thus, we can use the center
manifold theory [1] to investigate dynamics of transformed system (1) near B = B*. It is possible to
obtain the right eigenvectors of H(Fp)|;_s. which are denoted by w = (w1, w2, ws, wy)T where
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Similarly we can obtain the left eigenvectors of H(Fy)|5_s. denoted by v = (v1,v2,v3,v4) where
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m, ’1)3:’l)3>0,’04:0.

U1 = 0; V2 =
Now we proceed to obtain the associated bifurcation coefficients, a and b as described in Theorem
4.1 of [1]. For the purpose of clarity we restate Theorem 4.1 of [1].

Theorem 1 (Castillo-Chavez and Song [1].) Consider the following general system of ordinary
differential equations with a parameter ¢

Cfl—f:f(x,w),f:R"xR%Randfe(C(R"XR), 2)

where 0 1s an equilibrium point of the system (that is, f(0,¢) = 0 for all ¢ and assume

Al: A=D.,f(0,0)= (gg{; (0, O)) is the linearization matrix of the system 2 around the equilibrium

0 with ¢ evaluated at 0. Zero is a simple eigenvalue of A and other eigenvalues of A have negative
real parts;

A2: Matriz A has a right eigenvector w and a left eigenvector v (each corresponding to the zero
eigenvalue).



Let fi. be the kth component of f and
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Then, the local dynamics of the system 2 around 0 are determined by the signs of a and b.
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(ii)

(iii)

(iv)

a>0,b>0. When ¢ < 0 with |p| < 1, 0 is locally asymptotically stable and there exists a
positive unstable equilibrium; when 0 < ¢ < 1, 0 is unstable and there exists a negative, locally
asymptotically stable equilibrium;

a<0,b<0. When ¢ < 0 with || < 1 0 is unstable; when 0 < ¢ < 1, 0 is locally asymptotically
stable equilibrium, and there exists a positive unstable equilibrium;

a>0,b<0. When ¢ < 0 with |p| < 1 0 is unstable, and there exists a locally asymptotically
stable negative equilibrium; when 0 < ¢ < 1, 0 is stable, and a positive unstable equilibrium
appears;

a < 0,b > 0. when ¢ changes from megative to positive, 0 changes its stability from stable to
unstable. Correspondingly a negative unstable equilibrium becomes positive and locally asymp-
totically stable.

In particular, if a > 0 and b > 0, then a backward bifurcation occurs at ¢ = 0.

Computation of a.

The transformed model system (1) has the following non-vanishing partial derivatives of H evaluated
at disease free equilibrium,
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Computation of b.
The sign of bifurcation parameter b is associated with the following non-vanishing partial derivatives
of F, also evaluated at disease free equilibrium;
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The eigenvectors vs and wjs are positive. The bifurcation coefficient b is always positive. From
Theorem 1 the model system (1) will exhibit backward bifurcation phenomena if the bifurcation
coefficient a defined by (3) is positive. We can clearly see from (3) that the positivity of a is entirely
dependent on the level of exogenous reinfection parameter p. This suggests existence of a bifurcation
threshold below which backward bifurcation disappears and above which bi-stability phenomena
occurs. After algebraic manipulation it can be shown that the bifurcation coefficient a > 0 whenever
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