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1 Cognitive factors

1.1 Top-down effects do not require semantic processing

If we provisionally consider hierarchical accounts of visual processing [1], ranging from low- [2] through
to mid- [3, 4] and higher-levels [5, 6], the rich-vs-poor differential effect on the top-down map must
originate from a stage that is above low-level (due to the orthogonal construction of the top-down map
with respect to low-level image content, see Supplementary Figure 1). This observation places a
lower bound within the hierarchy, however it is unclear what the upper bound would be: the relevant
stage may lie anywhere above low-level, whichever hierarchical framework is adopted. For example, we
may subscribe to a minimal three-stage pipeline [7, 8] where images are first encoded as disconnected
collections of local features (stage 1), those features are then grouped according to the inferred structure
of object segmentation (stage 2), and finally segmented objects are semantically labelled as ‘people’ or
‘buildings’ (stage 3). Within this framework, the top-down effect in Figure 2E may originate from either
stage 2 or stage 3. More information is needed to determine which one of these two alternatives may be
applicable.

We selectively disrupted the semantic stage (termed 3 above) via the established manipulation of
image inversion: when flipped upside-down, meaningful images (such as faces or scenes) become more
difficult to interpret correctly [9–11]. If the top-down effect in Figure 2E originates from the seman-
tic representation (stage 3), this effect should be reduced (possibly eliminated) by upside-down inver-
sion [12, 13]. We tested this prediction directly by simply repeating our sensitivity measurements with
inverted images, and found that the role of semantics is not supported by data: the top-down effect
was comparable to that obtained with upright images in both size and statistical significance (compare
confidence intervals indicated by red/black vertical segments near y axis in Figure 2F). This finding sets
an upper bound on the origin of the top-down effect at a level preceding the semantic stage, possibly
corresponding to what we termed stage 2 (segmentation stage) in the simplified hierarchical description.
Combined with the lower bound defined above, this additional result enables enough specification of the
relevant phenomenon to support clear connections with existing literature (see Discussion, main text).
We found similar results with contrast-reversed scenes (not shown), further confirming the lack of se-
mantic involvement (contrast reversal is widely regarded to achieve a similar goal to image inversion in
disrupting semantic representations [14]).

1.2 Top-down effects are orthogonal to spatial attention

Previous literature has pointed to spatial attention as potentially playing a key role in natural scene
understanding [15–17], although the exact nature of its impact remains unclear [18–22]. Prompted by
these findings, we manipulated attentional deployment in an effort to determine its role (or lack thereof)
in driving the top-down effect. On ‘precue’ trials, the natural scene was preceded by a bright blob centred
on the location subsequently occupied by the grafted probe, thus providing observers with a valid spatial
cue; on ‘postcue’ trials, the cue only appeared after the natural scene (see Methods and Supplementary
Video 1). Observers were therefore afforded the opportunity to deploy spatial attention to the probe on
precue, but not postcue, trials [23, 24].

The cueing manipulation had no impact on the top-down effect (both black (precue) and magenta
(postcue) symbols fall above horizontal dashed line in Figure 2G at p<0.01 with overlapping confidence
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intervals). This lack of any measurable impact is not a result of observers simply ignoring the spatial cue
(which they may have potentially chosen to do, as this strategy would not preclude performing the task):
performance was substantially higher on precue trials (y axis in Figure 2E) as opposed to postcue trials
(magenta symbols fall above equality line at p<0.01), unambiguously demonstrating that observers did
in fact exploit the reduction in spatial uncertainty conveyed by the cueing manipulation [24] (see also
confidence interval indicated by magenta diagonal segment in Figure 2E). We conclude that spatial
attention boosts overall sensitivity, however it has no impact on the differential top-down modulation of
sensitivity. This result can also be understood as indicating that attention does not change the qualitative
nature of how image processing operates in relation to the assigned task: the effect of attention is
orthogonal to the top-down manipulation, similar to other aspects of image understanding [25, 26].

2 Scene manipulations

2.1 Potential role of spatial frequency

The two fundamental attributes of static images are orientation and spatial frequency [27]; these two
properties are prominently represented within the neural code [28], and can support adequate image
reconstruction [29, 30]. Spatial frequency, for example, underlies coarse-to-fine models of image under-
standing [2,31–33]. To investigate its potential role, we generated highpass and lowpass filtered versions
of the natural scenes [34] (examples are shown in Figure 3A and B respectively). We did not alter the
region immediately surrounding the probe because our goal is to selectively understand the role played
by the global, not local, content of the scene (had we altered the region immediately surrounding the
probe, we would be unable to tease apart local versus global effects on sensitivity). The top-down effect
is retained with highpass scenes (blue symbols fall above horizontal dashed line in Figure 3C at p<0.01)
but it is lost with lowpass scenes (red symbols scatter around dashed horizontal line at p=0.19; see also
confidence intervals indicated by vertical segments near left y axis). It is relevant in this respect that
the interpretability of highpass scenes is largely retained for our database, while it is almost invariably
lost with lowpass scenes (due to heavy blurring, lowpass images do not deliver recognizable content).
Interestingly, both manipulations present a bottom-up effect, particularly the lowpass manipulation: for
the highpass case, the effect is mildly significant at p<0.04; for the lowpass case, it is significant at
p<0.01. Given the presence of a data point (red symbol occupying bottom-right region of plot) that
departs from the main cluster for the lowpass data, we applied outlier detection (Grubbs test) and inden-
tified the abscissa value (bottom-up) as potentially outlying (at p<0.05). After removing this data point,
the bottom-up effect remained significant at p<0.02. We also combined lowpass and highpass to test
for collectively manipulating bandpass content, and found a significant bottom-up effect at p<0.002.
All effects were also obtained with a more conventional (but less appropriate for this dataset) t-test.
It is therefore clear that bandpass manipulations lead to bottom-up effects (nearly all data points in
Figure 3C fall to the right of the vertical dashed line), while sometimes also retaining a top-down effect
(highpass manipulation).

2.2 Potential role of orientation content

The above results indicate that image intelligibility may play a pivotal role in determing the top-down
effect. To further study the role of scene interpretability, we developed a warping algorithm that gradually
deforms image structure while largely retaining texture characteristics (Figure 3D-E). To a limited
extent, this manipulation selectively targets orientation content while leaving spatial frequency relatively
unaffected. Warping does not eliminate the top-down effect (blue/red symbols in Figure 3F fall above
horizontal dashed line at p<0.02), however it reduces its size, and it does so progressively: mild warping
(Figure 3D) returns a mean top-down effect of ∼0.5 compared with ∼0.6 for intact natural scenes,
further reduced to ∼0.3 with strong warping (E). The different magnitude of top-down effect between
mild and strong warping survives direct comparison (green data points in inset to Figure 3F scatter
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above diagonal equality line at p<0.04).

2.3 Potential role of segmented regions/boundaries

As a further step in elucidating the role played by global image structure, we applied two drastic manip-
ulations: in the ‘cut-out’ variant, segmented objects are filled with randomly assigned uniform intensity
(Figure 3G); in the ‘line’ variant, only their contours are retained as bright lines within binary images
(Figure 3H; see Methods). Perhaps surprisingly, the top-down effect is still measurable with cut-out
scenes (blue symbols in Figure 3I fall above horizontal dashed line at p<0.01), but it is completely elim-
inated by the line manipulation (red symbols scatter around horizontal dashed line at p=0.19; see also
confidence intervals indicated by vertical segments near y axis). It is relevant in this respect that most
cut-out scenes retain intelligibility, while line-manipulated scenes almost invariably lose interpretability.
Incidentally, these two manipulations exclude any role for two potential artefactual results, namely that
top-down effects may be a result of differential probe distribution across the visual field and/or low-level
second-order image cues that are not captured by the bottom-up map (see sections 6.1 and 6.2).

2.4 Potential role of phase/power spectra

Manipulations of phase/power spectra have previously been exploited to demonstrate that image intelligi-
bility depends far more on the phase structure of the Fourier spectrum than on its amplitude [35]. In the
‘phase-only’ manipulation (magenta in Figure 4), the phase structure of the spectrum is retained while
the amplitude (power) structure is replaced by a random perturbation; in the ‘power-only’ variant (cyan
in Figure 4), the complementary manipulation is applied (see Methods). Although it was often difficult
to obtain reliable measurements with such highly degraded images (‘power-only’ scenes consisting of no
more than unintelligible texture), our results are consistent with the notion that image interpretability is
supported primarily by the phase spectrum [35–37]: the top-down effect was retained with ‘phase-only’
scenes, while it was entirely eliminated with ‘power-only’ scenes.

3 Role of spatiotemporal characteristics

3.1 Spatiotemporal relationship between probe and scene

Feedback interpretations of top-down effects [38] may lead to the expectation that these effects should
depend on the temporal order of information accrual from the probe in relation to the surrounding
natural scene [39]. More specifically, if top-down effects reflect the operation of a scene-interpreting
module that sends signals back to the local machinery in charge of analyzing the probe [40, 41], the
time cost associated with signal transmission should mean that top-down modulation should be greater
when the scene is presented before the probe as opposed to being presented after the probe [39]. We
tested this prediction by designing ‘zooming’ variants of our stimulus, where a smooth transition was
enacted between a probeless scene (left-most image in Figure 5A) and a sceneless probe (right-most
image in Figure 5A). The zooming algorithm carries out this transition for any probe location and type
(see examples for all 4 probe types in Figure 5A-D; see also Methods and Supplementary Video 2).
We tested two zooming directions, ‘zoom-in’ (scene-to-probe moving rightward in Figure 5A-D) and
‘zoom-out’ (probe-to-scene moving leftward in A-D), as well as two different stimulus durations, short
(entire zooming transition lasting 100 ms) and long (300 ms).

Similar to attentional deployment, we found that zooming direction/duration had a sizeable impact
on overall performance (blue/red data points in Figure 5E fall above/below diagonal equality line at
p<0.01), however the top-down effect was left unaffected by either manipulation (red/magenta/light-
blue symbols in Figure 5F-G fall above horizontal dashed lines at p<0.01, blue symbols at p<0.02;
see also confidence intervals indicated by vertical segments near y axes). More specifically in relation
to zooming direction, the scene-to-probe transition (zoom-in, y axis in Figure 5E) was associated with
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better performance than the opposite transition (zoom-out, x axis). We interpret this result as indicating
that, although the spatiotemporal relationship between scene and probe does play a role in determining
overall sensitivity for analyzing the probe and it does so in the direction of scene analysis facilitating
probe analysis, the qualitative operation of the system in relation to the top-down/bottom-up distinction
is orthogonal to spatiotemporal dynamics.

3.2 Role of space in isolation

The zooming stimulus compounds spatial with temporal manipulations. To selectively study the role
of spatial layout, we introduced a gap of varying size between the probe and the surrounding scene
(Figure 6B-E). Because probe discrimination was more challenging with large (Figure 6E) as opposed
to small gaps (Figure 6B), we adjusted the signal-to-noise ratio (SNR) of the probe to ensure that
overall performance was consistently above chance, and of comparable magnitude, for all gap sizes (red
trace in Figure 6F). The gap had virtually no effect on top-down/bottom-up effects: the bottom-up
effect was absent at all gap sizes (black symbols in Figure 6F), while the top-down effect was present
at all gap sizes (green symbols).

To evaluate this observation more quantitatively using individual observer analysis, we notionally split
gap sizes into ‘small’ (gap smaller than probe) and ‘large’ (gap larger than probe). The top-down effect
was equally strong and robust for the two gap groups (blue/magenta symbols in Figure 6G fall above
horizontal dashed line at p<0.01/0.05). We also observed a marginally significant bottom-up effect
for large gap sizes in the direction of better performance for poor locations (magenta symbols fall to
the left of vertical dashed line at p<0.05), however this effect is not confirmed by confidence interval
estimation (magenta horizontal segment near top x axis overlaps with vertical dashed line) and has
therefore likely arisen by chance. We conclude that the top-down effect has a global (spatially extended)
origin, consistent with the notion that it reflects scene interpretation [34, 42].

3.3 Role of time in isolation

To isolate the role of time, we varied stimulus presentation between 10 and 300 ms; again, we adjusted
probe SNR to ensure that performance was stable across the entire range (red trace in Figure 6H).
We chose to avoid the use of a post-mask for three reasons. First, because there is no accepted mask
design for natural scenes that can be safely adopted without complicating data interpretation [43, 44].
Post-masks do not simply ‘interrupt’ visual processing but rather interact with the stimulus in complex
ways [43,45,46], and the nature of this interaction depends on the structure of the mask [47]. Adopting
a post-mask may therefore disrupt the processing mode that would be engaged by the perceptual system
during natural vision, and eventually distort data interpretation [43, 47]. Second, even if one were to
assume that the post-mask does not distort visual processing (which is incorrect as explained above),
relevant/critical processing can impact perception well after the mask has supposedly ‘interrupted’ visual
processing, as now unequivocally demonstrated by both psychophysical [45] and EEG measurements [48];
in other words, there is no sense in which a post-mask can be used to restrict perceptual processing to
a specific time period preceding the mask [47, 48]. Third, at the ultra-short stimulus durations required
to observe a decrease of the top-down effect and the emergence of a bottom-up effect (10-30 ms), the
presence of a post-mask reduces performance to such an extent that the protocol is no longer viable for
testing with naive observers. We collected 800 trials (∼200 trials per individual d′ estimate) at 20-ms
stimulus duration on a non-naive, extensively experienced observer (author PN), in the presence of a
post-mask. The post-mask extended over the entire natural scene, was presented immediately after
the stimulus, and consisted of pixel noise (each pixel was independently assigned a randomly selected
luminance value from a uniform distribution spanning the whole monitor range). The probe contained
a noiseless signal at ∼40% contrast (an optimal setting for supporting discrimination) and the stimulus
was always preceded by a precue. The average d′ value under these favourable conditions was merely
∼0.2, making this protocol inadequate for naive observer testing; we attempted data collection on the
naive observer with highest performance efficiency within our participant pool, but she could not perform
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above chance (d′ ∼0). Despite the extremely low performance achieved by the non-naive observer, it was
still possible to measure differential effects in the form of rich/poor d′ log-ratios and confirm the results
obtained without a post-mask (detailed in the next paragraph): the top-down effect survived at ∼1.5,
together with the presence of a bottom-up effect at ∼0.5 (log-ratios). To summarize, the adoption of
a post-mask was neither desirable [43, 46, 47] nor feasible for extensive data collection in the context
of our experiments; the limited measurements we were able to obtain using a pixel-noise post-mask are
consistent with those obtained without the use of a post-mask.

Although the top-down effect survives at most stimulus durations, it demonstrates a steady tendency
to decrease at shorter durations (green symbols in H); this trend may not be evident due to the relatively
small log-ratio range spanned by the top-down characteristic in H (green trace is compressed along y axis),
but it is strong when assessed via correlation coefficient (Pearson’s r=0.91 at p<0.005, 95% confidence
interval 0.64-0.99; also significant in all tests from robust correlation battery [49]; data has been rescaled
and replotted in inset to H to aid visualization of positive trend). Interestingly, the bottom-up effect
shows a complementary pattern: as documented previously, it is absent for durations in the 100-300 ms
range, but it becomes visible for very short durations (black symbols in H). To evaluate these trends
in more detail, we group stimulus durations into short (less than 30 ms) and long (≥30 ms). At long
durations, we measure a top-down effect with no bottom-up effect (magenta symbols in Figure 6I fall
above horizontal dashed line at p<0.01 and scatter around vertical dashed line at p=0.94). Conversely,
at short durations we measure a bottom-up effect with no top-down effect (blue symbols in I fall to the
right of vertical dashed line at p<0.01 and scatter around horizontal dashed line at p=0.25). At this level
of analysis, it appears that the system switches from bottom-up to top-down mode very quickly on a
timescale of ∼30-50 ms, consistent with measurements reported for the extraction of colour information
from natural scenes [50].

The above-detailed bottom-up→top-down transition must be interpreted with caution, due to the
difficulty of obtaining reliable measurements at short durations: some observers were excluded from
estimates at 10/20 ms because they could not perform the task (see Methods), and statistical significance
assessed with p values is not entirely consistent with confidence intervals. More specifically, the 95%
confidence interval for bottom-up effects at short durations (horizontal blue segment near top x axis in
Figure 6I) includes 0 (no effect), casting doubt on the interpretability of the small p value returned by
the sign-rank test for this effect. This discrepancy may originate from the presence of a potential outlier
(blue data point at bottom-right, Grubbs test [51]): when this data point is removed, p values (0.22/0.03
for bottom-up/top-down) and confidence intervals (thin horizontal/vertical blue segments in I) converge
to indicate that bottom-up/top-down effects may be similar at short and long durations. Exclusion of
specific data points is a hazardous procedure [51, 52], however, so that this additional analysis should
also be regarded as tentative.

To summarize the dependency of bottom-up/top-down effects on stimulus duration, we find some
indication that the dominance of top-down information may be reduced for very short exposure, and that
at such ultrashort durations the role of bottom-up information may be detectable. These observations
must be viewed with caution: at an aggregate level (data collapsed across participants) the decreasing
trend of top-down effects with decreasing duration is clear (inset to Figure 6H); the presence/absence
of specific effects, however, cannot be robustly assessed at the individual observer level (Figure 6I).

4 Robustness tests of EEG data

Although our analysis is motivated by a fair assessment of the most relevant features displayed by the
EEG, it inevitably requires arbitrary choices relating to specific parameters (e.g. filter cut-off frequencies).
We therefore took additional steps to ensure that the metric we plot in Figure 7G is genuinely reflective
of bottom-up/top-down modulations, rather than the result of arbitrary expectations imposed on noisy
data [53]. First, we ran a confirmatory experiment [54,55] (see Methods). We know from the behavioural
measurements that top-down effects are observed not only with natural scenes, but also with their cut-
out variants (Figure 3I, blue symbols). We therefore expect that the top-down effects exposed by the
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EEG metric in Figure 7G should also be measurable in response to cut-out stimuli.

4.1 Replication with cut-out stimuli

The result of applying identical analysis to additional data from EEG experiments with cut-out stimuli,
shown by open symbols in Figure 7G, is very similar to that obtained with intact scenes (open data points
fall above horizontal dashed line at p=0.03; because this is a confirmatory measurement, a one-tailed test
is justified, lowering the p value to <0.02). To further validate this replication, we examined potential
correlations between the combined bottom-up/top-down differential effects for cut-out stimuli (x/y values
of open symbols in Figure 7G) and those for undistorted scenes (x/y values of solid black symbols); we
found a strong correlation for occipital electrodes (see tilt of black symbols in Figure 7I; r value is 0.76
at p<0.002), and no significant positive correlation for central/frontal electrodes (magenta/orange data
points in Figure 7I,K), further emphasizing the specificity and relevance of occipital activity.

4.2 Invariance with respect to filtering parameters and common EEG arte-
facts

We filtered the raw EEG with aggressive lowpass/highpass cut-off values of 20/1 Hz. These parameters
were chosen to selectively target the bandwidth occupied by contralateral-ipsilateral difference waveforms
[56,57], however this choice is to some extent arbitrary. We therefore repeated our analysis with a looser
bandwidth (40-0.5 Hz) to verify that the choice of cut-off parameters does not impact our results. All
top-down/bottom-up effects reported in Figure 7G-H survive unaltered, and the estimates returned by
the loose bandwidth (y axis in Figure 7J) are strongly correlated with those obtained with the tighter
bandwidth (x axis) for occipital electrodes (black symbols in Figure 7J, r=0.87 at p<10−12), but not
central electrodes (p=0.36) and only mildly for frontal electrodes (r=0.36 at p<0.02). We also verified
that our results do not depend on known EEG artefacts: occipital top-down effects survive artefact
rejection despite the associated depletion of data mass (blue symbols in Figure 7G fall above horizontal
dashed line at p<0.02; see Methods for details).

5 Deep networks generate proxy top-down maps

Our choice of the gain-control model is motivated by extensive electrophysiological and behavioural
evidence to support this canonical computation [58, 59]. It is certainly possible to capture retuning
using other schemes, but the purpose of the modelling exercise in Figure 8C is not tied to specific
implementations: whichever circuit is favoured, the results in Figure 8 demonstrate that top-down
effects on sensitivity can be captured using a few physiologically plausible elements [60]. In other words,
it is relatively straightforward to account for local processing within the probe, not only in terms of its
overall characteristic, but also in relation to sensory retuning under the instruction of a putative top-down
signal (blue arrows in Figure 8C). It is far more challenging, however, to model the instructing signal
itself: it must originate from some relatively global representation of the scene, which so far we have
referred to using the vague term ‘top-down’.

The construction of a full-scale mechanistic model that is both physiologically plausible on the one
hand, and capable of producing an adequate representation of the entire natural scene on the other
hand, far exceeds our current knowledge of visual cortex [6, 61], let alone the remit of this study. We
can make a first step in this direction, however, by resorting to established computer vision algorithms
that, although not necessarily developed to mimic cortical processing, often share important features
with neural architectures [62, 63] (see below).

6



5.1 Sensitivity increases gradually along top-down map

Figure 9A plots intensity on the top-down map against corresponding discrimination performance across
all >1700 different probe insertion points (we pooled data across observers to obtain an average of ∼160
trials per insertion point). There is a clear correlation between the two quantities (r=0.27, p∼0). This
result is expected, in that it is a different way of presenting the top-down effect discussed so far: in
previous presentations (e.g. Figure 2F) probe insertions were classed into either rich or poor, and
the associated average sensitivity values were compared (via log-ratio); Figure 9A-C retain the nearly
continuous value on the top-down map rather than applying a binary conversion. Although the resulting
correlation is partially unsurprising in light of the results reported previously, there is an interesting added
benefit to examining the data in the manner plotted in Figure 9A (see below).

Because of the many constraints imposed on the computer algorithm that effected selection of probe
locations to generate the poor/rich bottom-up/top-down structure (see Methods), the threshold between
rich and poor on the top-down map classed consensus locations [64] (i.e. selected by all participants) as
being rich, and all others as being poor (Supplementary Figure 1). The resulting classification explains
the dense cluster aligned with the largest abscissa value in Figure 9A, the size of which is reflected by the
solid green symbol. This observation prompts us to ask whether the relationship between values on the
top-down map and human sensitivity is itself binary, leading to high sensitivity for consensus locations and
equally low sensitivity for all other locations, or whether it presents a genuinely proportional characteristic
that tracks top-down values progressively, so that the larger the top-down value, the larger the associated
sensitivity. Figure 9A allows us to confirm the latter trend: the correlated structure remains significant
(r=0.11, p<0.002) when consensus locations are excluded (i.e. by considering only data aligned with
the open green symbols). This result strenghtens the connection between human sensitivity and the
top-down map beyond the log-ratio analysis proposed earlier.

5.2 Deep convolutional networks (DCN) produce correlation values compa-
rable to top-down map

As expected, there is no such correlation (r=-0.02, p=0.3) when sensitivity is similarly plotted against the
bottom-up map (Figure 9B). As detailed in Methods, this map was generated by a basic edge detection
algorithm. We now ask whether more elaborate computer vision algorithms are able to produce measur-
able correlations. As demonstrated in Figure 9D, where we present examples from three model classes,
only last-generation deep networks (red) are able to generate map values that correlate significantly with
human sensitivity. We focus on CRF-RNN (see full correlation plot in Figure 9C), a recent DCN for
semantic segmentation [65] that is able to achieve a correlation value comparable to that returned by
non-consensus values on the top-down map (open green symbol in Figure 9D; compare with right-most
red symbol for CRF-RNN). To further verify that this algorithm is truly capable of capturing the top-down
effects we document here, we recomputed sensitivity log-ratios in the manner adopted earlier, but with
relation to the probe classification generated by the DCN rather than the top-down map derived from
hand-labelling in BSD500. This analysis enables individual observer estimates, plotted in Figure 9E: the
DCN demonstrates a clear top-down effect (red symbols fall above horizontal dashed line at p<0.01),
albeit smaller in amplitude than the effect returned by the top-down map (black symbols, reproduced
from Figure 2F; see confidence intervals indicated by vertical segments near y axis). For comparison, we
plot the result of applying an established algorithm for image segmentation from a few years earlier [66]
(preceding the deep network revolution [62]): this algorithm produces no shift in the data (blue symbols
scatter around the origin), emphasizing the non-triviality of the top-down shift produced by the DCN.

5.3 DCN successfully rejects perceptually irrelevant image features

What are the features of the DCN segmentation that enable it to capture the human data in a way that
other algorithms are unable to achieve? This is a complex question, but we can gain some insight by
visually inspecting examples from the two algorithms. The two segmentations presented in Figure 9E,

7



corresponding to the natural scene from Figure 1A, demonstrate that while CRF-RNN is able to trace
out the two most relevant objects in a manner consistent with human visual perception (red-tinted inset
scene in Figure 9E), the competing algorithm presents several false alarms (blue-tinted inset scene),
notably inclusive of the location (indicated by yellow circles in Figure 9E) that was labelled as rich on
the bottom-up map but poor on the top-down map (solid red circle in Figure 1D).

6 Potential role of known phenomena and/or design flaws

6.1 Distribution of probe insertions across the visual field
We consider the following hypothetical scenario: rich probe insertions on the top-down map sample
primarily the region around the fovea, while poor insertions on the top-down map fall largely within the
periphery of the visual field. Further, we suppose that such differential distributions of rich versus poor
locations only applies to the top-down map, and not to the bottom-up map: in relation to the latter, we
suppose that rich and poor insertion points are similarly distributed across the visual field. Under this
scenario, the decreased sensitivity for poor locations on the top-down map may be trivially attributed to
the expected decline in sensitivity with eccentricity [67]. This interpretation is in no way connected with
the notion of image understanding, potentially undermining the whole premise of our experiments and
rendering the top-down effect trivially uninteresting. We can exclude this interpretation on the basis of
three important observations.

First, although probe distribution is biased towards central vision, it is very similar for rich versus poor
locations on both maps (Supplementary Figure 2A-B). Any small idiosyncratic difference between rich
and poor distributions is similar for top-down and bottom-up maps (blue lines in Supplementary Figure
2A-B). Second, although performance did decrease with eccentricity as expected (solid/open symbols
in Supplementary Figure 2C-D), the differential top-down effect was nearly unaffected by eccentricity
(blue line in Supplementary Figure 2D). In other words, even when the analysis is restricted to a
specific subregion of the visual field and whichever that region may be, it is still the case that the top-
down effect is present (and unchanged in magnitude), while the bottom-up effect is absent (blue line in
Supplementary Figure 2C). Third and most importantly, if the top-down effect is merely the result of
differential probe distribution, it should survive the ‘line’ manipulation (Figure 3H): in the experiments
with line-manipulated images, probe distribution across the visual field is statistically identical to that
used with intact natural scenes. Contrary to this expectation, the top-down effect was absent with
line-manipulated images (red symbols in Figure 3I), providing conclusive evidence against the proposed
artefactual interpretation of top-down effects.

6.2 Second-order texture cues
Research on eye-movement control has demonstrated, alongside the general importance of top-down
factors [68], the need to consider not only first-order image attributes when evaluating the low-level
content of natural scenes [69], but also second-order cues [70]. The bottom-up map defined in Figure
1C (main text) relies on first-order energy alone, because edge detection as supported by differential
operators [71] (and many other similar edge-detection algorithms) is luminance-based. It is therefore
conceivable that the rich/poor categorizaton afforded by the bottom-up map may completely miss second-
order image cues, such as edges defined by spatial frequency inhomogeneities [70], and that it is these
low-level cues that drive top-down effects. We can rule out this interpretation on the basis of two
important observations. First, the specifics of how the bottom-up map is generated are unimportant
to our conclusions, as long as they retain the notion of low-level representation. For example, we
show that human sensitivity is uncorrelated with image content when this is coded along the bottom-
up map generated by the luminance operator (black symbol in Figure 9D), as well as one generated
by visual saliency algorithms that do incorporate second-order cues such as the Itti-Koch operator [72]
(orange symbols). Second and most importantly, if the top-down effect is driven by second-order cues, it
should be entirely eliminated by the cut-out manipulation (Figure 3G), because cut-out images destroy
all second-order structure that may have been present within the original natural scenes (see paragraph
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below for further elaboration on this point). Contrary to this expectation, the top-down effect was clearly
measurable with cut-out images (blue symbols in Figure 3I), providing conclusive evidence against the
proposed artefactual interpretation.

It is useful to consider in greater detail exactly why cut-out images eliminate any potential connection
between second-order cues on the one hand, and labelling across bottom-up/top-down maps on the other
hand. This outcome critically depends on a specific design feature of the probe insertion algorithm,
namely that no probe insertion point could occur at 0 values on either top-down or bottom-up maps
(see Methods section within main text): even for the case of ‘poor’ labels, the probe insertion point was
restricted to a minimal threshold value on the respective map. For example, a probe that was labelled
‘poor’ on the top-down map was nevertheless associated with a minimal non-zero value on the top-down
map. In turn, this means that the associated boundary would be retained by the cut-out manipulation
(as well as the ‘line’ variant, Figure 3H).

Suppose that we now measure low-level content from cut-out images in the form of a ‘surrogate’ low-
level map; there is no low-level information in the cut-out images other than luminance-defined edges,
so first-order cues are sufficient to capture all low-level content within cut-out images. All insertion
points (whether originally labelled ‘poor’ or ‘rich’ on the top-down map) will be associated with a visible
boundary on said ‘surrogate’ map, and the map value associated with each boundary will be randomly
assigned by virtue of the random luminance assignment given to different regions of cut-out images.
The end result is that the ‘surrogate’ map, and therefore the low-level content in the cut-out image,
is completely disconnected from labelling on the top-down map. Whatever role second-order cues may
play in the experiments, whether in relation to the manner in which they were exploited by participants
in BSD500 for boundary annotation or in relation to their potential contribution to the top-down effects
we measure here, it is inapplicable in the case of cut-out images: in order for cut-out images to generate
a top-down effect, their perceptual representation must share some similarities with the original scenes,
and these similarities must derive from image features that are not captured by low-level content.

A similar conclusion is reached by considering ‘line’ images, which present the same boundaries
contained within cut-out images. In both cases, all image boundaries from the original scene are converted
into luminance-defined objects of equal magnitude: exactly equal in the case of ‘line’ images, statistically
equal (on average across random assignments) in the case of ‘cut-out’ images. Any potential role played
by second-order cues in natural scenes must carry over to both manipulations, yet top-down effects are
only observed for one (‘cut-out’) and not the other (‘line’), ruling out any low-level role for second-order
cues.

It is important to clarify that our experiments do not exclude a role for second-order cues in assisting
the perceptual reconstruction of object boundaries from natural scenes; nor, for that matter, do they
exclude such a role for first-order cues: clearly, the perceptual representation of the scene must come
from the image, as there is nothing else in the stimulus that provides observers with information about
the scene to be interpreted. The issue is one of separating incidental from critical factors. Low-level
image cues, whether of the first- or second-order kind, are incidental in the sense that, although they
provide image definition that is exploited to obtain a perceptual representation of the layout of the
scene, such representation can be achieved by relying on a variety of image features, and ultimately it is
unimportant which specific low-level cues underlie the representation: only the latter is critical to observe
the top-down effects measured in this study, not the low-level cues that were exploited to obtain the
representation in the first place.

6.3 Spatial uncertainty
Previous literature has recognized that spatial uncertainty can often account for a wide range of phe-
nomena [73], many of which may not at first appear connected with this notion [74]. We must therefore
ask whether the top-down effects may be explained by uncertainty reduction: is it conceivable that rich
locations on the top-down map may be associated with less uncertainty than poor locations, resulting
in enhanced sensitivity? Several considerations lead us to exclude this interpretation. First, the pre-
cue/postcue manipulation involves a very substantial reduction of spatial uncertainty, in turn associated

9



with a 2-fold improvement in performance (magenta symbols in Figure 2E). This otherwise sizeable
manipulation had no impact on top-down effects (Figure 2G), strongly indicating that the two factors
are orthogonal. Second, spatial uncertainty is larger in the peripheral visual field [75]; if this phenomenon
played a role in determining top-down effects, such effects should be more pronounced in the periph-
ery than in the fovea. Contrary to this prediction, we found that top-down effects were at least as
pronounced, if not more so, in the central visual field as opposed to the periphery (Supplementary
Figure 2D). Third, prior work has demonstrated that spatial attention is not associated with orientation
retuning across a wide range of stimulus/task specifications [76–78], including some not dissimilar than
the probe design adopted here [24]. In contrast, the top-down effects we document in this study are
associated with sizeable retuning (Figure 8C; blue symbols in Figure 8B). In conclusion, the notion of
spatial uncertainty cannot account for the primary effects reported in this study.

6.4 Crowding
Crowding is an additional prominent factor known to impact local discrimination [79, 80]. We may
hypothesize that, for whatever reason, crowding may be less pronounced at rich locations within the top-
down map. There is no doubt that crowding was operational during the experiments detailed here, due to
the mere presence of complex visual elements immediately surrounding the probe region. It is extremely
unlikely, however, that its strength varied systematically in such a manner as to generate the top-down
effects reported in this study. First, crowding is primarily (if not exclusively) a peripheral phenomenon
in the intact visual system [81], whereas top-down effects show virtually no dependence on eccentricity
(Supplementary Figure 2D). Second, it has been claimed that crowding is intimately related to the
notion of summary statistic [82], and therefore primarily connected with impaired discrimination of
second-order inter-feature relationships [83] that may be lost when highly structured properties of image
patches are reduced to summary statistical descriptions [84]. In our experiments, discrimination relied
on the extraction of a single basic feature (orientation), the statistics of which would be largely retained
by minimal summary accounts. Third, crowding is greatly affected by the introduction of asynchronous
timing between probe and crowders [85]; this effect depends on presentation order, with stronger crowding
for probes preceding crowders [86]. If crowding played a substantial role in shaping top-down effects, they
should be reduced when probe and natural scene are asynchronous, and more importantly this reduction
should be asymmetrical with respect to probe-crowder temporal order. Contrary to this prediction, the
top-down effects we observe with zooming stimuli are of comparable magnitude to those obtained with
synchronous elements (compare red/magenta bars next to y axis in Figure 5F (main text) with red/black
bars next to y axis in Figure 2F) and do not depend on zooming direction (compare blue bar with light-
blue bar next to y axis in Figure 5G). In conclusion, crowding cannot account for the top-down effects
reported in this study.

6.5 Flanker effects
In the same way that crowding must have been active during the experiments (but not contributing
differential effects), so must have been flanker facilitation/inhibition [87]. Various elements of our dataset
rule out this well-known phenomenon as a potential explanation for top-down effects. Some of those
elements have been presented above; here we offer additional observations. First, under the expectation
that the region flanking the probe should impact sensitivity, the largest effects must be expected for
the bottom-up, not the top-down, manipulation, because the latter involves far larger changes in local
characteristics than the former (see Figure 2A-D in main text). Furthermore, if top-down effects are
caused by the flanking region, we expect those effects to disappear when said region is removed, contrary
to what we observed in the gap experiments (Figure 6A-G in main text). We can therefore exclude
that flanking facilitation/inhibition is the source of the top-down effects reported here.

6.6 Eye movements
Eye-movement scanning of natural scenes often presents idiosyncratic characteristics [68, 88], and it has
been claimed that several low-level image features may contribute, some of which (e.g. second-order
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texture cues) may be overlooked by edge-detection algorithms [69, 70]. Our experiments with cut-out
scenes, among others, rule out the possibility that top-down effects may depend on such features to
any substantial extent (see preceding section on ‘Second-order texture cues’), however eye-movement
strategies may play a role. It is conceivable, for example, that eye movements may differ when probes
are inserted at rich versus poor locations on the top-down map, differentially affecting sensitivity. This
interpretation, however, is ruled out by the spatial cueing experiments. We emphasize that observers were
clearly instructed to maintain fixation at all times and stimulus duration was below typical eye-movement
rate (1

3
Hz), thus minimizing any potential role of eye movements. If however they nonetheless moved

their eyes, we expect that their eye-movement strategy should be subtantially different on precue trials,
when they had prior information as to where the probe would appear and may therefore be tempted to
foveate that location, as opposed to postcue trials. If top-down effects reflect eye-movement strategy,
they should differ between precue and postcue trials, contrary to our observations (Figure 2G).

A related argument applies to the zooming stimuli: zooming direction is expected to impact eye-
movement strategy due to its differing focus-in/focus-out characteristics, and it may be reasonable to
expect that zooming duration would also play a role. In particular, it is expected that eye-movements
would be drawn to the probe much more quickly for the zooming-out stimulus due to earlier knowledge of
probe location, while they would be guided to probe location more gradually under zooming-in condition;
further, it is expected that the associated difference in eye-movement strategy would be more pronounced
at longer durations of 300 ms, comparable with the frequency of eye movements, than at 100 ms, a
period too short to allow for such differences to emerge. Contrary to these expectations, neither direction
nor duration had any impact on top-down effects (Figure 5F-G). Combined with the observations in the
previous paragraph, we conclude that eye movements are not the source of the top-down effects reported
in this study.

6.7 Criterion shifts

The primary behavioural metric of interest in this study is visual sensitivity in the form of d′, an estab-
lished concept from signal detection theory [89] (SDT). It is well-known that, under some conditions,
d′ may be confounded with criterion changes [90], making 2-alternative-forced-choice (2AFC) designs
preferable to yes-no single-interval protocols because, under the former design, criterion effects are min-
imized/eliminated [89]. Unfortunately, it was not possible to design the experiments described here in
conformity with 2AFC protocols. In our previous work with natural scenes [26, 91], we adopted spatial
2AFC designs where observers saw two identical scenes symmetrically presented on opposite sides of
fixation. Although this design enables bias minimization [89], it involves several shortcomings: 1) the
stimulus is very unnatural, because we never experience natural scenes as duplicated on opposite sides
of the fovea; 2) probe insertions can only occur peripherally, precluding the kind of eccentricity analysis
afforded by Supplementary Figure 2 and associated conclusions (see above); 3) most importantly,
the 2AFC spatial design would make it impossible to peform the lateralized analysis that is critical to
the EEG experiment (Figure 7) because the presence of two probes on opposite sides of fixation would
preclude attribution of specific EEG modulations to the spatial location of individual probes. Similar
criticism applies to temporal 2AFC variants: besides implicating memory as a potential confounding
factor, these protocols are particularly problematic in relation to the EEG experiments because the VEP
associated with the second interval would inevitably present superimposed activity from the first interval,
making it difficult (if not impossible) to correctly interpret relevant patterns [57]. We therefore opted
for a yes-no single-interval paradigm, which results in more natural stimulation and viable task condi-
tions. To minimize any potential role for criterion changes, we mixed the primary conditions of interest
(bottom-up/top-down poor/rich) within the same block. We further confirm below that the d′ changes
we measure in association with bottom-up/top-down effects conclusively reflect true sensitivity changes;
we do measure, however, concomitant criterion effects, which we document below.

Within the context of the equal-variance SDT model, d′ and criterion c are computed as Φ−1(phit)−
Φ−1(pfa) and −0.5×[Φ−1(phit)+Φ−1(pfa)], where Φ−1 is the inverse of the normal cumulative distribution
function, phit is the probability of a hit response, and pfa the probability of a false alarm [89]. In our
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experiments these two quantities are clearly correlated (Supplementary Figure 3B, r=0.75, p<10−6),
so that several top-down effects reported in this study with respect to d′ can also be demonstrated with
respect to c. This may raise suspicions about the origin of the d′ changes, and in particular whether
they may not result from criterion changes for an underlying mechanism that does not conform to the
assumed equal-variance model. We can rule out this possibility based on several observations.

We first notice that criterion shifts are not only commonly measured in concomitance with sensitivity
changes [92–95], but are also expected from plausible theoretical considerations [94, 96]. In light of
existing literature we conclude that their absence, rather than their presence (as we observe here), would
raise legitimate suspicions. Furthermore, and in line with previous work [94], the criterion effects we
measure are nearly one order of magnitude smaller than corresponding sensitivity effects. The most
transparent way of appreciating this fact is to plot our dataset as receiver operating characteristics [90]
(ROC), as we do in Supplementary Figure 3A. This approach retains close proximity with the raw
data: there are no assumptions underlying this manner of summarizing behaviour, in that ROC plots
simply report direct estimates of the probability associated with specific stimulus-response outcomes.
More specifically, for a yes-no single-interval protocol we can summarize behaviour using only pfa and phit
(see above), plotted on x and y axes respectively in Supplementary Figure 3A. Two basic conclusions
can be easily arrived at from evaluating the data in this manner.

First, observers were consistently biased in the direction of adopting a conservative criterion: they
were substantially more likely to report that the probe was incongruent rather than congruent (data points
fall below diagonal magenta line corresponding to no response bias or c=0). The presence of such bias
makes it imperative that potential criterion shifts are analyzed thoroughly [97], as we do here. Second, the
poor→rich transition on the top-down map indicated by the red→green cluster separation (see inset to
Supplementary Figure 3A) is much more pronounced along the direction corresponding to a sensitivity
change (up to the left, see magenta arrow within main panel) than along the direction corresponding
to a criterion change (down to the left, see magenta arrow within inset). Readers familiar with ROC
plots can immediately gauge from the data scatter that the transition effected by the red→green clusters
is not compatible with any iso-sensitivity fit from plausible unequal-variance SDT models [89, 90]: it is
bound to reflect a substantial change in sensitivity. This sensitivity change may be associated with a
small criterion effect, as indicated by our measurements and as expected on theoretical grounds [94,96],
but it is certainly not artefactually generated by the criterion change.

To further appreciate the difference in magnitude between changes in d′ and c shifts, we plot best-fit
traces from an equal-variance SDT model to the different data clusters. Solid traces in Supplementary
Figure 3A correspond to different sensitivity values (isosensitivity curves); they demonstrate a clear tran-
sition along the top-down map (red→green) with no transition along the bottom-up map (gray→black).
This is the top-down effect on sensitivity which we have documented extensively in the main text via
log-ratios (e.g. Figure 2F). Dashed traces in the inset to A correspond to different criterion values
(isocriterion curves); they demonstrate a concomitant transition along the top-down map (red→green),
however its magnitude is substantially smaller than the corresponding transition for sensitivity. A more
direct and quantitative approach for evaluating this magnitude difference is to gather rich/poor log-ratios
for both d′ and c across all experimental conditions that showed a top-down effect with no bottom-up
effect, and plot them against each other in Supplementary Figure 3C. For d′ (y axis), the 95% con-
fidence interval on the top-down map (green vertical segment near right y axis) is 0.36-0.54; for c it is
0.04-0.1 (green horizontal segment near top x axis), i.e. nearly ×7 times smaller. Further, there is no
correlation between d′ and c when recast as top-down rich/poor log-ratios (r=-0.02, p=0.89); the lack
of correlation for differential effects re-enforces the notion that, although the two processes correlate on
absolute scales (Supplementary Figure 3B), they are independently modulated by top-down control.

To summarize this section, we find small and largely expected [92–96] criterion shifts associated
with the reported sensitivity transitions. The presence of these effects is of no concern for our d′-based
analysis, particularly in the form of log-ratios (Supplementary Figure 3C).
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