
S3 Appendix: stability analysis of skyhook and

balance control strategies.

This appendix presents the stability analysis for the proposed semi-active
controllers. Considering the system dynamics Eq. (13), which takes into account
the control input saturation

ẍp = k (xh − xp) + (bcontrol + c) (ẋh − ẋp) (S3.1)

bcontrol is the damping from the semi-active control command. The semi-active
control laws of the skyhook and balance are de�ned in Eq. (5) and Eq. (3),
respectively.

bsky(ẋp,M) = b1(M) + b2(M)
ẋp

ẋp − ẋh
(S3.2)

bbal(ẋp,M) = bd(M) + (kd(M)− k(M))
xp − xh
ẋp − ẋh

(S3.3)

The control command bcontrol is obtained using the following saturation due
to physical limitations and b(ẋp,M) from one of the control laws presented in
Eq. (2) and Eq. (3).

bcontrol =

 bmax, b(ẋp,M) ≥ bmax

bcontrol, bmax > b(ẋp,M) > 0
0, 0 ≥ b(ẋp,M)

 (S3.4)

The presented stability proof only considers the boundary values of bcontrol.
Thus both control strategies have the same proof as well as same boundary
values.

Let w = kxh + (c+ bcontrol)ẋh, then

ẍp = − k
m
xp −

bcontrol + c

m
ẋp +

1

m
w. (S3.5)

The Lyapunov candidate function is de�ned as

V = XTPX (S3.6)

where X is the state variables and P is a positive matrix

X =

{
xp
ẋp

}
P =

[
k
m (c+ bmax +m) 1

1 (c+ bmax +m)

]
(S3.7)
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For the matrix P be positive de�nite, the determinant of the matrix P must
be greater than zero, det(P ) > 0. The determinant of P is

det(P ) = k

(
2bmax + 2c+m+

(bmax + c)2

m

)
− 1 > 0 (S3.8)

The heave compensator has k >> 1, bmax >> 1, c >> 1. Thus, the
determinant of P is always bigger than 0 and P is a positive de�nite matrix.
Now, the derivative of V is obtained

V̇ = +2 1
mw (xp + (c+ bmax +m)ẋp)− 2 k

mx
2
p − 2xpẋp

(c+bcontrol)
m

−2ẋ2p
(
(c+ bmax +m) (c+bcontrol)

m − 1
) (S3.9)

De�ning the matrix L

L =

[
2 k
m

c+bcontrol

m
c+bcontrol

m 2
[
(c+bcontrol)(bmax+c+m)

m − 1
]] (S3.10)

The determinant of L has the below expression, which is always positive,
because c > 1 and bmax > bcontrol > 0. Thus L is positive de�nite.

det(L) =
(c+ bcontrol − 1) 4km

+ c+bcontrol

m2 (4k(c+ bmax)− (c+ bcontrol))
> 0 (S3.11)

The positive matrix L is used to rewrite the Eq. (??)

V̇ = −XTLX+ 2
1

m
w (xp + (c+ bmax +m)ẋp) (S3.12)

When xh, ẋh and bcontrol are bounded, w is also bounded, ‖w‖ ≤ w0. We
write xp + (c + bmax + m)ẋp as Y X, where Y = [1, (c+ bmax +m)] and use
the inequality Y X ≤ ‖X‖ ‖Y ‖. The norm of Y is constant. Using the last two
inequalities we obtain:

V̇ ≤ −XTLX+
2

m
‖Y ‖ ‖X‖w0 (S3.13)

The variables λmin and λmax denote the smallest and the largest eigenvalues
of a matrix, respectively.

V̇ ≤ −λmin(L) ‖X‖2 +
2

m
‖Y ‖w0 ‖X‖ (S3.14)

A part of −λmin(L) ‖X‖2 dominates 2
m ‖Y ‖w0 ‖X‖ for large ‖X‖. The

inequality is rewritten as
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V̇ ≤ −(1− θ)λmin(L) ‖X‖2 − θλmin(L) ‖X‖2 +
2

m
‖Y ‖w0 ‖X‖ (S3.15)

where 0 < θ < 1. Then,

V̇ ≤ −(1− θ)λmin(L) ‖X‖2 , ∀ ‖X‖ ≥
2

m
‖Y ‖w0

1

θλmin(L)
(S3.16)

We conclude that the solutions are globally uniformly ultimately bounded
B. The theorem 4.18 of [?] is applied to determine the ultimate bound:

B =
2

m
‖Y ‖w0

1

θλmin(L)

√
λmax(P )

λmin(P )
(S3.17)
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