S3 Appendix: stability analysis of skyhook and
balance control strategies.

This appendix presents the stability analysis for the proposed semi-active
controllers. Considering the system dynamics Eq. (13), which takes into account
the control input saturation

L'U'P =k (QTh - xp) + (bcontrol + C) (-'Eh - -'Ep) (831)

beontrol 18 the damping from the semi-active control command. The semi-active
control laws of the skyhook and balance are defined in Eq. (5) and Eq. (3),
respectively.
. T
bsky (Zp, M) = by (M) + ba( M) —L= (S3.2)
Tp — Th

Tp — Th

byat (ip, M) = ba(M) + (ka(M) — k(M) (53.3)

Tp — Th
The control command b.ypir0; iS Obtained using the following saturation due

to physical limitations and b(&p, M) from one of the control laws presented in
Eq. (2) and Eq. (3).

bmaw7 b(:tpa M) Z bmam
bcontrol = bcontrol, bma:c > b(xpa M) >0 (834)
0, 0> b(dp, M)

The presented stability proof only considers the boundary values of beoptroi-
Thus both control strategies have the same proof as well as same boundary
values.

Let w = kxp + (¢ + beontrot ) Th, then

.. k beontrol + € . 1
- —w. S3.5
Zp Zp - Tp + W ( )
The Lyapunov candidate function is defined as

V =XTPX (S3.6)

where X is the state variables and P is a positive matrix

k
oz _ |+ bmaz +m) 1
X{. } P= { i (c + b + ) (S3.7)



For the matrix P be positive definite, the determinant of the matrix P must
be greater than zero, det(P) > 0. The determinant of P is

(bmaz + 0)2)

det(P) =k (Qbmw +2c+m+ —1>0 (S3.8)

The heave compensator has k& >> 1, bye: >> 1, ¢ >> 1. Thus, the
determinant of P is always bigger than 0 and P is a positive definite matrix.
Now, the derivative of V' is obtained

V - +2%w (xp + (C + bmaw + m)xp) - 2%:5127 - Qij:p (C+bco”ﬁ:n”ﬂ) (S3 9)
=232 (¢ + bnay +m) EHezmzat) 1) '
Defining the matrix L
k ctbeontrol
L= c+bc:tmz ) |:(C+bcont7‘ol)(l§7:naz+c+m) _ 1:|‘| (8310)
m m

The determinant of L has the below expression, which is always positive,
because ¢ > 1 and b,,02 > beontror > 0. Thus L is positive definite.

_ (C + bcontrol - 1)%
det(L) = | etbuaginat (4h(c + byngs) — (6 + boontro)) 0 551D

The positive matrix L is used to rewrite the Eq. (?7?)
. 1
V= -XTLX +2—w (2, + (¢ + bpax +m)i,) (S3.12)
m

When z,, &, and beontror are bounded, w is also bounded, |Jw|| < wy. We
write x, + (¢ + bimae + m)E, as Y X, where Y = [1, (¢ + byes + m)] and use
the inequality YX < || X|| ||Y||. The norm of Y is constant. Using the last two
inequalities we obtain:

: 2
V< -XTLX + — Y] | X || wo (S3.13)

The variables A, and A,,4, denote the smallest and the largest eigenvalues
of a matrix, respectively.

. 2
V < =Amin( ) IXI7 + = [V o X (83.14)

A part of —Apmin(L)]|X]|> dominates 2 ||Y || wo | X| for large || X|. The
inequality is rewritten as



. 2
V< (1= 0)Amin (L) 1XI* = OAmin (L) [1X I + = ¥ [0 | X (83.15)

where 0 < 6 < 1. Then,

1

. 2
< (1= )M ’ Zm OAmin(L)
V< ( 9))\7,””([/) HXH ’ v HX” - m HYH o aAmin(L)

(S3.16)

We conclude that the solutions are globally uniformly ultimately bounded
B. The theorem 4.18 of [?] is applied to determine the ultimate bound:

1 Amaz (P)

2
B=—|Y|wo ($3.17)
m
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