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Text-mining 

We collected PubMed abstracts annotated with MeSH terms for major depressive disorder and 

full PMC articles to construct two different corpora. The PubMed search resulted in a corpus 

of 96,968 entries 8,902 containing the ‘major depressive disorder’ expression. The PMC articles 

were segmented into sentences to build the second corpus. ‘Major depressive disorder’ occurred 

1,482 times in the 20,865,176 sentences. Each diseases with MeSH annotation was counted in 

both corpora as well as co-occurrence of disease pairs. The following disorders in the corpora 

were accounted as depression: atypical depressive disorder, major depressive disorder, 

moderate recurrent major depression, endogenous depression, mental depression, psychogenic 

depressive psychosis, chronic depressive disorder, postpartum depression. These depressive 

disorders were found in both corpora except moderate recurrent major depression which 

appeared only in the PMC corpus. 

The results of text-mining can be found in Supplementary Dataset S1. 

 

Additional information to the applied methodology for network 

computation 

Earlier works often focused on bivariate comorbid models and used a latent factor approach to 

describe the connection between two diseases [1, 2]. These bivariate models were extended to 

examine the connections between multiple disorders. A detailed introduction to bivariate and 

multivariate psychological comorbid models is provided by Krueger et al. and Middeldorp et 

al. [1, 2]. Multivariate models have typically used pairwise measures or structural equation 

modelling (SEM) to model comorbidity. Pairwise measures are easy to implement but cannot 

take into account confounding factors and often overestimate specific relations: for example 

relative risk is known to overestimate comorbidity of rare diseases. Structural equation 

modelling overcomes this problem but uses models defined by the user. Logistic regression 

(LR) is another commonly used tool to examine the relationships between a target disease and 

multiple other disorders. LR has the advantage of testing for interactions between covariate 

disorders on the target disease. Conversely, LR defines the interactions only between the target 

disorder and the others and cannot define causality. In “reality”, comorbid disorders work as a 

dynamic, feed-back multi-morbid network (Fig. S1 A) which can be assessed by modelling 

complex medical datasets. However, pairwise measures (Fig. S1 B) introduce many unreal 

connections, or ‘edges in the language of graph network theory, between indirectly connected 

disorders (‘nodes’) and cannot define causality between the diseases. In models based on 

logistic regression, only the directly connected subset of the nodes can be identified (Fig. S1 

C). The best approximation of the real network structure can be achieved by applying 

probabilistic graphical modelling (PGM) approach (Fig. S1 D) which could potentially define 
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the dependencies between the disorders, although it fails to find feed-back loops. The applied 

Bayesian systems-based methodology is a specific subtype of PGMs. To describe the 

investigated disorders together with sex and age we use the expressions 'variables' or 'variable 

set' in this study.  

 

Figure S1 Comparison of different comorbid network approaches. Circles denote diseases, and 

the red circle with T used as the target disease. A. The real, dynamic network containing feed-

back loops B. Comorbid network computed by pairwise statistical measures. The darker lines 

are the real direct connections, which secondarily generate many unreal edges (lighter lines). 

C. Multivariate model, e.g. logistic regression. Only the neighbors of the target node are 

identified. D. Bayesian systems-based comorbid network, which is able to detect direct 

connections between diseases. 

Classical statistics 
We computed odds and relative risk with 95% confidence intervals, the mostly applied 

epidemiologic tools which makes our results comparable to others findings. Furthermore we 

used mutual information, Pearson's correlation coefficient and Fisher's exact test to examine 

disease relationships. As it is not straightforward to interpret a comparison between 

probabilities and odds we used Chi-squared statistics with the Yates' continuity correction to 

enumerate the strength of a connection in the co-morbid network. Logistic regression served as 

a tool for searching factors in depression. For these computations we used in-house written R 

scripts together with the statistical programs included in the stats package of R [3].  

The results of these methods can be found in Supplementary Dataset S2 and S3. 

Construction of Bayesian direct multimorbidity map (BDMM) 
Probabilistic graphical models (PGMs) provides a formal, structural representation for the set 

of multivariate dependencies and independencies over morbidities, where each morbidity 

(disease) is represented by a graph node [4, 5]. A popular class of PGMs, Bayesian networks, 

uses directed acyclic graphs to represent multivariate dependencies and conditional 

independencies [6]. Within a general Bayesian framework for the quantitative dependencies, 

this representation is sound and complete with respect to its probabilistic interpretation, 

meaning that the represented multivariate dependencies and independencies are exactly the 

dependencies and independencies present in the distributions compatible with the graphical 

representations (for mathematical details, see e.g. [7]). Bayesian networks also offer a rich 

language for representing causal relations, see e.g. Table S1, but we use only the probabilistic 

interpretation and corresponding relations, such as direct dependence represented as an edge 

(link), to avoid further assumptions about the data and the domain [6, 8]. 

The Bayesian inference over structural properties of Bayesian networks was put forward 

decades ago [9], together with the first MCMC scheme [10]. This approach was successfully 

applied to characterize a complete domain using a posteriori probabilities of pairwise relations 

(see e.g [11-14]), and it was also useful to characterize the relevance of explanatory variables 

for a given target [11, 15-18]. Assuming complete data, Cooper-Herskovits parameter priors 

with virtual sample size 1 and uniform prior over structures with maximal 6 parental set size, 

the posterior of the structure G P(G|D) can be computed efficiently [9]. The a posteriori 

probability of direct dependency between variables X and Y is defined as a marginal in 

Bayesian model averaging by the following sum  
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where 1(.) denotes the indicator function, which gives 1 if the property holds in G and 0 

otherwise. The direct dependency posteriors, i.e. edge posteriors, are estimated using a DAG-

based Markov Chain Monte Carlo simulation [19]. The probability to apply different DAG 

operators in the proposal distribution was uniform, the length of the burn-in was 5x105 and the 

length of the sample collection is 1.5x106. To check the convergence of the MCMC simulation 

for the estimated posteriors, we calculated the Geweke Z-score and the Gelman-Rubin R-score 

(less than 0.1 and 1.1, respectively) and confidence intervals (less than 0.1) [20]. 
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Supplementary Table S1 Different types of structural dependencies between morbidities using 

Bayesian network semantics. The co=morbidity relation is visualized in Bayesian direct 

multimorbidity maps (BDMM). 

Connection type Definition 

Direct comorbidity: co=morbidity 

D1 parent of D2 There is a directed edge from D1 to D2 

D2 parent of D1 There is a directed edge from D2 to D1 

Indirect or mediated comorbidity 

D1 descendant of D2 There is a directed path from D2 to D1 

D1 ancestor of D2 There is a directed path from D1 to D2 

D1 confounded with D2 D1 and D2 have a common ancestor 

Pairwise association 

D1 associated with D2 (pairwise association) 
If there is an edge or directed path between D1 and D2 

or D1 and D2 have a common ancestor 

No relationship 

D1 independent of D2 
There is neither direct nor mediated connection between 

D1 and D2   
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Correspondance between BDMM and molecular interactome-

based mapping   

We used PheGenI [21] together with the curated DisGenet database [22] to find gene-disease 

associations. We extended this dataset with the data provided by Menche et al. [23] because a 

molecular level interactome-based map would allow a detailed investigation of the 

epidemiological relations [23]. Unfortunately, the UK Biobank uses in-house developed disease 

coding which is not linked to general taxonomies as Unified Medical Language System 

(UMLS) or to Medical Subject Headings (MeSH). Thus to provide interpretation of our 

multimorbid map a subset of the UK Biobank disease categories, containing depression, 

metabolic syndromes and hypertension, were translated into UMLS terms and the PheGenI 

search terms which were then used to define the disease-gene and disease-interactome 

associations (Supplementary Table S2).  

 

Supplementary Table S2. The PheGenI search terms and UMLS identifiers used to define 

disease-gene associations within the PheGenI and the DisGeNet curated databases 

respectively. 

UK Biobank disease Corresponding UMLS terms PheGenI search terms 

depression C1269683;C1837929;C1837529;C0011581 Depression; Depressive 

Disorder, Major 

diabetes C0011849;C0011854;C0011860;C0342277;C1832392;

C1832474;C1832605;C1833218;C1838259;C1838260;

C1838261;C1838262;C1852092;C1854125;C1857808;

C1864068;C1866040;C1866041;C1866519;C2675472;

C2675864;C2675865;C2675866;C2751697;C1832387;

C1832544;C1842642;C1863594 

diabetes mellitus; diabetes 

mellitus, type 1 

high cholesterol C0020443;C1839021;C1863512;C1863551;C1858233 cholesterol 

hypertension C0020538;C0085580;C1839021 hypertension 

obesity C0028754;C0028756;C0311277;C2675358;C2675659 obesity 

type 2 diabetes C0011860;C1832387;C1832544;C1842642;C1863594 diabetes mellitus, type 2 

 

The software and the interactome network by Menche et al. [23] were used to compute the 

separation scores. Separation score describes the relationship of two diseases on the molecular 

level by utilizing the network of connected genes. The separation score characterizes the 

distance of gene sets associated with each of the two diseases. Larger, positive values represents 

distinct gene sets over the interactome whereas smaller, negative values represents more 

connected (closer) gene sets. In considering our results We used the threshold of 0 as in Menche 

et al. [23] for disease pair association. Next we compared the separation scores to relative risks 

and the BDMM posteriors. We present the results of this analysis in Supplementary Table S3. 
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Supplementary Table S3. The interactome-based separation score compared to the relative 

risk and the BDMM posterior probability. 

Disease1 Disease2 Relative 

Risk 

BDMM 

posterior 

Separation 

score 

Genetic 

overlap 

Short name 

obesity-30BMI hypertension 2.051 0.999 -0.023 2.1E-8 Obes-Hypert 

obesity-30BMI diabetes 3.525 0.999 0.049 2.5E-5 Obes-Diab 

obesity-30BMI type 2 diabetes 4.331 0.999 0.117 0.242 Obes-T2D 

obesity-30BMI depression 1.557 0.999 -0.070 0.003 Obes-Depr 

obesity-30BMI high cholesterol 1.651 0.286 0.144 0.031 Obes-HighChol 

hypertension diabetes 5.196 0.999 -0.076 3.2E-8 Hypert-Diab 

hypertension type 2 diabetes 4.651 0.999 0.064 0.397 Hypert-T2D 

hypertension depression 1.190 0.025 0.043 0.234 Hypert-Depr 

hypertension high cholesterol 3.872 1.000 -0.027 0.154 Hypert-HighChol 

diabetes type 2 diabetes 0.510 0.099 -0.398 2.5E-62 Diab-T2D 

diabetes depression 1.149 0.000 0.049 2E-4 Diab-Depr 

diabetes high cholesterol 3.435 0.999 -0.121 2E-4 Diab-HighChol 

type 2 diabetes depression 1.702 0.000 0.053 0.382 T2D-Depr 

type 2 diabetes high cholesterol 3.389 1.000 -0.009 0.427 T2D-HighChol 

depression high cholesterol 1.243 0.000 0.062 0.04 Depr-HighChol 

 

Moreover, we applied a common tool, hypergeometric distribution p-value to evaluate gene set 

overlapping [24]. This score describes that the size of the overlap between gene sets is how 

likely by chance (see Supplementary Table S3). 

The evaluation of genetic overlap, interactome-based separation scores, the pairwise measure 

based relative risk and the BDMM posterior probability results can be seen in Figure S2. 

 

Figure S2. Comparison of genetic overlap, interactome-based separation scores, pairwise 

measure (relative risk), and BDMM posterior probabilities in a subset of the UK Biobank 

disease categories. 

Figure S2 shows the cross comparison of direct and associative metrics from epidemiological 

and molecular levels evaluating the hypothesis that the type of the metric (direct versus 

associative) is more influential than the level (epidemiological versus molecular) on their 

similarities.  Specifically, the direct relation-based methods are consistent and sparse through 

the molecular (interactome-based separation score) and epidemiologic (BDMM based posterior 

probabilities)-levels. 

 

 

 First, we examined the comorbid disorders with high posterior and relative risk compared to 

the separation score (see Fig. S2 I-II). The separation score was positive in three cases (obesity-

diabetes ‘B’, obesity-type 2 diabetes ‘C’, and hypertension-type 2 diabetes ‘G’). This probably 

reflects the missing interactions in the interactome as the epidemiological relations are well 

described in the literature. We can distinguish three different scenarios for the comorbid 

connections with moderate relative risk: (1) links with negative separation scores have high 
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BDMM posterior probabilities ('A' and 'D'); (2) while those with positive separation scores have 

almost 0 posteriors ('O', 'M', 'K', 'H'); (3) finally obesity and high cholesterol (link 'E') is the 

only case where the BDMM approach did not purify the connection but results in a moderate 

posterior of (Pr=0.29) and positive separation score. Figure S2 III-IV show the differences of 

relative risk and BDMM compared to the hypergeometric distribution p-values computed for 

genetic overlap. A marked difference can be observed for measures between type-2 diabetes 

and depression (‘M’), namely as the associative metrics (relative risk and genetic overlap) show 

strong connection on the contrary direct relation-based method, BDMM filters this link.  

In summary, the compatibility of direct relation-based approaches suggest that these different 

level of information sources can be combined to reconstruct the complete multimorbidity 

map. 

Results using the alternative depression definition  

Smith et al. [25] computed alternative diagnoses of probable depression based on the Mental 

Health Questionnaire (http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100060) data filled out 

by the participants. Depression was coded positive if the patients selected „Ever felt depressed 

for a whole week” or „Ever disinterested or unenthusiastic for a whole week” and the „Episode 

lasted more than 2 weeks” and they have seen GP or psychiatrist for „nerves, anxiety, tension 

or depression”. Severity was determined as follows: Single Probable MD Episode if only 1 

episode happened; Probable Recurrent MD (moderate) if more episodes reported but only GP 

was seen; Probable Recurrent MD (severe) if more episodes reported and psychiatrist was seen. 

Using these alternative diagnostic categories we reanalyzed the data and compared to the 

multimorbidity map obtained by using the depression diagnosis ascertained during the face-to-

face interviews. First we created a merged depression variable resulting in 21367 depressed 

participants (satisfied the definition above regardless of severity). In the second case we 

performed a multivariate analysis using the above depression severity categories with the 

following counts: single episode of depression: n=5421; recurrent moderate depression: 

n=10094; recurrent severe depression: n=5852. As many participants who reported depression 

during the face-to-face interview sessions were not categorized as depressed by the above 

questionnaire based methodology we added a fourth depression indicator for these patients 

(interview depression: n=2588). For this analysis we did not use the original interview based 

depression variable.  

We used the BDMM method to compute the multimorbidity networks. In case of the merged 

depression category the results were similar to the original depression networks (see Fig S4). 

Depression has stable connections to other psychiatric disorders. The only difference is that 

bipolar depression has a direct relationship to depression using the merged variable (note that 

the alternative depression definition does not exclude subjects with bipolar features). The 

difference is bigger in case of somatic disorders. The merged variable has direct edges 

(co=morbidity) to obesity, fibromyalgia (FM), chronic fatigue syndrome (CFS) but the edges 

leading to irritable bowel syndrome (IBS) and gastro-oesophageal reflux (GORD) are missing. 

These are connected to depression indirectly through FM or obesity. Additionally in this 

analysis asthma is co=morbid with depression. Besides, migraine has an indirect relationship 

to depression through three paths namely: asthma--rhinitis--migraine, back pain—headaches 

(not migraine)--migraine, FM—IBS—migraine (see webtool, Co=MorNet: 

bioinformatics.mit.bme.hu/UKBNetworks). 

http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100060
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Figure S3 Bayesian direct multimorbidity map (BDMM) with the alternative single binary 

depression indicator. Depression is the union of the different depressive disorders based on 

Mental Health Questionnaire data and defined by Smith et al [25]. 

In case of the multivariate depression analysis (see Fig S5) we examined the direct 

co=morbidities of the depressive disorders with different degree of severity. As expected the 

different types of depression form a complete sub-graph, because we derived them as mutually 

exclusive disease categories, which introduces technical connections between them (if one type 

of depression present in a patient another could not be). All psychiatric disorders have direct 

connections to one or more type of depression. The most remarkable observations are:   

 Anxiety connects to all types of depression. 

 Bipolar disorder binds only to recurrent severe depression. 

 Stress is connected to recurrent depressions. 

Four somatic disorders are co=morbid with at least one type of depression. Obesity has direct 

edges to recurrent moderate depression and interview depression. IBS connected only to the 

interview depression variable. FM has an edge to recurrent severe depression while CFS has 

edges to recurrent severe depression and interview depression. 

 

Figure S4 Bayesian direct multimorbidity map (BDMM) using multivariate depression 

analysis. Different severity of depressive disorders were defined in [25]. 

  



9 
 

Additional results for the onset time restricted analysis 

 

 

Figure S5. Bayesian direct multimorbidity map (BDMM) for depression, irritable bowel 

syndrome, chronic fatigue, fibromyalgia and migraine in the full (A) and in the restricted 

(only disorders which onset was before depression, B) analysis. 
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List of Supplementary datasets 

Supplementary Dataset S1 The results of text mining for both corpuses, PMC and PubMed. The table 

contains the occurrence of diseases together with co-occurrence with depression. Depression is defined 

by the union of different subtypes of depression, namely:  atypical depressive disorder, major depressive 

disorder, moderate recurrent major depression, endogenous depression, mental depression, psychogenic 

depressive psychosis, chronic depressive disorder, postpartum depression. 

Supplementary Dataset S2 The results of the classical statistical measures for all pairs of factors 

including sex and age. The 'FULL' and 'NAF' notations represents the dataset used for computation. 

'FULL' dataset is the complete disease data while the filtered 'NAF' dataset contains only those co-

morbid occurrences if diseases arising before the onset of depression. 

Supplementary Dataset S3 Results of logistic regression. The table contains the Beta coefficients and 

the p-values. For the computation we used R's glm. 

Supplementary Dataset S4 The Bayesian direct multimorbidity map results. Beside the direct edges or 

connections between the different diseases the table contains other types of connections between the 

disease pairs. A detailed description of these measures can be found in supplementary material. 

 

References 

1. Krueger RF, Markon KE. Reinterpreting comorbidity: A model-based approach to 

understanding and classifying psychopathology. Annu Rev Clin Psychol. 2006;2:111. 
2. Middeldorp C, Cath D, Van Dyck R, Boomsma D. The co-morbidity of anxiety and depression 

in the perspective of genetic epidemiology. A review of twin and family studies. Psychol Med. 

2005;35(05):611-24. 

3. Team RC. R: A language and environment for statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria. 2013. ISBN 3-900051-07-0; 2014. 

4. Koller D, Friedman N. Probabilistic graphical models: principles and techniques: MIT press; 

2009. 
5. Pearl J. Probabilistic reasoning in intelligent systems: networks of plausible inference: Morgan 

Kaufmann; 2014. 

6. Pearl J. Models, reasoning and inference. Cambridge: Cambridge University Press; 2000. 
7. Meek C, editor Strong completeness and faithfulness in Bayesian networks. Proceedings of the 

Eleventh conference on Uncertainty in artificial intelligence; 1995: Morgan Kaufmann Publishers Inc. 

8. Glymour CN, Cooper GF. Computation, causation, and discovery: Aaai Press; 1999. 

9. Cooper GF, Herskovits E. A Bayesian method for the induction of probabilistic networks from 
data. Machine learning. 1992;9(4):309-47. 

10. Madigan D, Andersson SA, Perlman MD, Volinsky CT. Bayesian model averaging and model 

selection for Markov equivalence classes of acyclic digraphs. Communications in Statistics--Theory and 
Methods. 1996;25(11):2493-519. 

11. Friedman N. Inferring cellular networks using probabilistic graphical models. Science. 

2004;303(5659):799-805. 
12. Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, GuhaThakurta D, et al. An integrative genomics 

approach to infer causal associations between gene expression and disease. Nat Genet. 2005;37(7):710-

7. 

13. Zhu J, Sova P, Xu Q, Dombek KM, Xu EY, Vu H, et al. Stitching together multiple data 
dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation. 

PLoS Biol. 2012;10(4):e1001301. 

14. Yeung KY, Fraley C, Young WC, Bumgarner R, Raftery AE, editors. Bayesian Model 
Averaging methods and R package for gene network construction. Big Data Analytic Technology For 



11 
 

Bioinformatics and Health Informatics (KDDBHI), workshop at the 20th ACM SIGKDD Conference 

on Knowledge Discovery and Data Mining (KDD); 2014. 

15. Yeung KY, Bumgarner RE, Raftery AE. Bayesian model averaging: development of an 
improved multi-class, gene selection and classification tool for microarray data. Bioinformatics. 

2005;21(10):2394-402. 

16. Verzilli CJ, Stallard N, Whittaker JC. Bayesian graphical models for genomewide association 
studies. The american journal of human genetics. 2006;79(1):100-12. 

17. Antal P, Millinghoffer A, Hullám G, Szalai Cs FA, editors. A Bayesian view of challenges in 

feature selection: multilevel analysis, feature aggregation, multiple targets, redundancy and interaction. 

JMLR Workshop Conf Proc; 2008. 
18. Antal P, Millinghoffer A, Hullam G, Hajos G, Sarkozy P, Szalai C, et al. Bayesian, systems-

based, multilevel analysis of biomarkers of complex phenotypes: from interpretation to decisions. In: 

Sinoquet C, Mourad R, editors. Probabilistic Graphical Models for Genetics, Genomics, and 
Postgenomics: OUP Oxford; 2014. p. 318-62. 

19. Giudici P, Castelo R. Improving Markov chain Monte Carlo model search for data mining. 

Machine learning. 2003;50(1-2):127-58. 
20. Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian data analysis: Taylor & Francis; 2014. 

21. Ramos EM, Hoffman D, Junkins HA, Maglott D, Phan L, Sherry ST, et al. Phenotype–Genotype 

Integrator (PheGenI): synthesizing genome-wide association study (GWAS) data with existing genomic 

resources. European Journal of Human Genetics. 2014;22(1):144-7. 
22. Pinero J, Queralt-Rosinach N, Bravo A, Deu-Pons J, Bauer-Mehren A, Baron M, et al. 

DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. 

Database-the Journal of Biological Databases and Curation. 2015. doi: 10.1093/database/bav028. 
PubMed PMID: WOS:000361048600001. 

23. Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J, et al. Uncovering disease-

disease relationships through the incomplete interactome. Science. 2015;347(6224):1257601. 

24. Liu C-C, Tseng Y-T, Li W, Wu C-Y, Mayzus I, Rzhetsky A, et al. DiseaseConnect: a 
comprehensive web server for mechanism-based disease–disease connections. Nucleic Acids Res. 

2014;42(W1):W137-W46. 

25. Smith DJ, Nicholl BI, Cullen B, Martin D, Ul-Haq Z, Evans J, et al. Prevalence and 
characteristics of probable major depression and bipolar disorder within UK biobank: cross-sectional 

study of 172,751 participants. PLoS One. 2013;8(11):e75362. 

 


