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1 Existing reduced-complexity air quality models

1.1 CTM-based sensitivity models

Several CTM-based tools can reduce the computational requirements of determining how changes in emissions
would impact air pollution concentrations. The direct decoupled method (DDM, Zhang et al., 2012; Foley
et al., 2014), can, for example, calculate spatially explicit changes in health impacts attributable to changes
in overall emissions. The adjoint method (Hakami et al., 2007; Dedoussi and Barrett, 2014), can, for ex-
ample, calculate how spatially explicit changes in emissions cause changes in overall health impacts. Source
apportionment attributes pollutant concentrations or concentration sensitivities among different sources.
One example of a source apportionment tool is the Particle Source Apportionment Tool (PSAT) (Wagstrom
et al., 2008). All three of these approaches can be computationally inexpensive to use once the original
sensitivities are calculated and are likely more accurate than the approach we present here. However, the
calculated sensitivities are often not widely adaptable to different use-cases. For instance, changing the
spatial distribution of emissions in the case of DDM, the spatial distribution of the human population in
the case of the adjoint method, or the sources of interest in the case of source apportionment would require
re-running the CTM to create a new set of sensitivities. For this reason, these methods generally are not
amenable to use by non-experts.

There additionally exist statistical models based on the results of many CTM runs (e.g., the Response
Surface Model, US EPA, 2006; Foley et al., 2014; models based on neural networks or neuro-fuzzy systems,
Carnevale et al., 2009; EASIUR, Heo et al., 2016; or the model by Buonocore et al. (2014)); the requirement
of many CTM runs renders these models computationally expensive to create and update.

1.2 Gaussian

Gaussian plume models (e.g., AERMOD, Cimorelli et al., 2005) and models that are derived from them (e.g.,
COBRA, US EPA, 2012; APEEP, Muller and Mendelsohn, 2006; SIM-air, Guttikunda, 2009; or the model
developed for the US EPA National Air Toxics Assessment (NATA), Logue et al., 2011) analytically estimate
the downwind impact of individual sources or source groups. These models are computationally inexpensive
and useful for predicting near-source impacts but are not recommended for predictions of pollution transport
over long distances (> 50 km, US EPA, 2015). Additionally, Gaussian plume models generally cannot
robustly represent nonlinear or spatially variable rates of formation and evaporation of secondary PM2.5

(Seinfeld and Pandis, 2006).
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1.3 Lagrangian

Lagrangian models such as CALPUFF (Scire et al., 2000) and HYSPLIT (Draxler and Hess, 1997) track
long range transport from individual sources by tracking a packet of air as it interacts with its surroundings.
These models typically are less computationally intensive than CTMs if the number of sources is small, but
simulating many individual sources over a broad area can be computationally prohibitive.

1.4 Chemical mass balance

Chemical mass balance models (e.g., CMB: US EPA, 2004) estimate the contribution of different emissions
source types to ambient pollution concentrations by analyzing the relative contributions of different chemical
tracers and matching them to tracer profiles of known sources. This method is useful for estimating the
contribution specific source types, but requires detailed location-specific measurements and can only track
contributions from sources with known tracer profiles. Additionally, chemical mass balance models cannot
directly predict how changes in emissions would impact concentrations.
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