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1 Reduction to the equivalent cylinder

The key of the derivation relies on having the possibility to reduce the complex
morphology to an equivalent cylinder (Rall, 1962). We adapted this procedure
to capture the change in integrative properties of the membrane that results
from the mean synaptic bombardment during active cortical states, reviewed in
Destexhe et al. (2003).

For a set of synaptic stimulation {1/;, Z ug, uzd, s}, let’s introduce the fol-
lowing stationary densities of conductances:
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where D, and D; are the excitatory and inhibitory synaptic densities.
We introduce two activity-dependent electrotonic constants relative to the
proximal and distal part respectively:

v YV ®
ri(L+ rmgeo + rmio) ri(L+ rmgdo + rmio)

For a dendritic tree of total length I, whose proximal part ends at [, and
with B evenly spaced generations of branches, we define the space-dependent
electrotonic constant:

Mz) = (W + H(z — L) (AL = AP))2735 L5 (3)

where |.| is the floor function. Note that A(z) is constant on a given gener-

ation, but it decreases from generation to generation because of the decreasing

diameter along the dendritic tree. It also depends on the synaptic activity and
therefore has a discontinuity at = [,,.

Following Rall (1962), we now define a dimensionless length X:

Y dx
X = [ (@
o A)
We define L = X(I) and L, = X(I,), the total length and proximal part
length respectively (capital letters design rescaled quantities).

2 Mean membrane potential

We derive the mean membrane potential py (x) corresponding to the station-
ary response to constant densities of conductances given by the means of the
synaptic stimulation. We obtain the stationary equations by removing tempo-
ral derivatives in Equation, the set of equation governing this mean membrane
potential in all branches is therefore:
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Because the reduction to the equivalent cylinder conserves the membrane
area and the previous equation only depends on density of currents, the equation
governing u,(z) in all branches can be transformed into an equation on an
equivalent cylinder of length L. We rescale z by A(x) (see Equation 4) and we
obtain the equation verified by py (X):
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We write the solution on the form:
po(X) = b + A cosh(X) + C sinh(X) VX €0, L] ®
p1y(X) = v + B cosh(X — L) + D sinh(X — L) VX € [L,L]
e Sealed-end boundary condition at cable end implies D =0
e Somatic boudary condition imply: C' =~ (vh — Vo + A)
e Then v continuity imply : v} + A cosh(L,) +~? (v] — Vo + A) sinh(L,) =
vd + B cosh(L, — L)
e Then current conservation imply: A sinh(L,)+~+? (v —Vo+A) cosh(L,) =
AP .
Sz B sinh(L, — L)

We rewrite those condition on a matrix form:

(cosh(Lp) +~Psinh(L,) —cosh(L, — L) )(A) B (vg — v —~P (vh — V) sinh(Lp))
sinh(L,) + 4" cosh(L,) —37 sinh(L, — L)) \B/ ~ —P (v8 — V) cosh(L,)
(9)
And we solved this equation with the solve_linear_system_LU method of
Sympy
The coefficients A and B are given by:
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where:

a = VoyP AP cosh (L) cosh (L — L,) + VoyP' AP sinh (L,) sinh (L — L)
— PPy cosh (L,) cosh (L — Ly,) — yZ AP vl sinh (L) sinh (L — L,)
— MPodsinh (L — L,) + APl sinh (L — L,,)
B =~"\P cosh (L,) cosh (L — L) +~" A sinh (L) sinh (L — L,)+
AP sinh (L,) cosh (L — L,) + A\ sinh (L — L) cosh (L) (11)
v = AP (Voy” + "o cosh (L) — v"v]
—~yPvf cosh (L) + vl sinh (L,,) — vf sinh (L))
§ =~PAP cosh (L,) cosh (L — L) + " A\ sinh (L,) sinh (L — L,)
+ AP sinh (L,) cosh (L — L,) + A" sinh (L — L,) cosh (L,)

3 Membrane potential response to a synaptic event

We now look for the response to ng.. = L%J synaptic events at position
Zsre on all branches of the generation of zsrc, those events have a conductance



g(t)/nsre and reversal potential F,..,. We make the hypothesis that the initial
condition correspond to the stationary mean membrane potential py (x). This
potential will also be used to fix the driving force at the synapse to iy, (Tspc) —
FErcy, this linearizes the equation and will allow an analytical treatment. To
derive the equation for the response around the mean i, (), we rewrite Equation
9 in main text with v(z,t) = dv(x, )+, (x), we obtain the equation for dv(z, t):
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Because this synaptic event is concomitant in all branches at distance x4,
we can use again the reduction to the equivalent cylinder (note that the event
has now a weight multiplied by 7. so that its conductance becomes g(t)), we

obtain:
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where we have introduced the following time constants:
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We now use distribution theory (see Appel (2008) for a comprehensive text-
book) to translate the synaptic input into boundary conditions at Xg,.., phys-
ically this corresponds to: 1) the continuity of the membrane potential and 2)
the discontinuity of the current resulting from the synaptic input.
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We will solve Equation 13 by using Fourier analysis. We take the following
convention for the Fourier transform:

F(f) = /RF(t) e 2t gt (16)

We Fourier transform the set of Equations 13, we obtain:
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To obtain the solution, we need to split the solution into two cases:

1. Xsrc < Lp

Let’s write the solution to this equation as the form (already including the
boundary conditions at X =0 and X = L):

60(X, Xgre, f) =

Ar(Xgre) (cosh(a? X)++* sinh(a? X))
if0<X<Xge<Ly<L

By(Xsre) cosh(a (X — Lp)) + Cp(Xore) sinh(al (X — Lp))  (19)
i:0< Xgpe <X <L, <L

Dj(Xore) cosh(o} (X — L)
i:0 < Xype <L, < X <L

We write the 4 conditions correspondingto the conditions in Xj,. and L,
to get Ay, B¢,C¢, Ds. On a matrix form, this gives:

And we will solve it with the solve_linear_system_LU method of sympy.
For the Af(Xs,.) coefficient, we obtain:

with:

(22)

COSh(OfZ; Xsre) + 'y? sinh(a? Xsre) — Cosh(a? (Xsre — Lp)) - sinh(a? (Xsre — Lp)) 0
a? ( sinh(oa? KXsre) + 'yll; Cosh(a? XSTC)) —a? sinh(a? (Xsre — Lp)) —a? cosh(a? (Xsre — Lp)) 0
0 1 0 —cosh(af (Lp — L))
0 0 o) —a42% sinh(ad (L, — L))
(20)
Ay 0
B —rPT
Mo 2 = 21
o 7 (21)
Dy 0



a}c(Xsn.) = Ifrjlf (—a][v))\P cosh (La? — Lpoz? — Lpozjlcg + Xsoz?)
+ a?)\P cosh (Lajl? — Lpajl? + chx}D — Xsa?)
+ ozf/\D cosh (La? - Lpa? - Lpafc) + Xsa?)
+ oz}j)\D cosh (Lcujl? — chujl? + Lp()z}j — Xsaff)
afc(Xsrc) = 04]15 (—a?wf/\P cosh (—La? + Lpa? + Lpajlc))
+ a?'yf)\P cosh (Lafl? — Lposz + Lposz) —
a?)\P sinh (—La? + Lpa? + Lpa?)
+ a?)\P sinh (La? — Lpajz—-) + Lpaf)
+ afv}))\D cosh (—La? + Lpa? + Lpa}))
+ a?’yf)\D cosh (La? — Lpoz}j + Lpa}g)

(23)

+ aJIfAD sinh (—La? + Lpa? + Lposz)
+ af)\D sinh (La? — Lpajl? + Lpajf)

2. Lp < Xsrc

Let’s write the solution to this equation as the form (already including the
boundary conditions at X =0 and X = L:

(X, Xore, f) =

Ei(Xore) (cosh(azji X)+P sinh(o/;c X))
f0<X<L,<Xpe<L

Fr(Xre) cosh(af (X — Lp)) + Gp(Xre) sinh(af (X — L)) (24)
if:0<L,<X<Xye<L

Hj(Xgre) cosh(af (X — L))
if0<L,<Xge<X<L

We write the 4 conditions correspondingto the conditions in Xj,. and L,
to get Ay, Bf,Cr, Dy. On a matrix form, this gives:

We rewrite this condition on a matrix form:

cosh(a? Ly) + ’y? sinh(a? Ly) -1 0 0
. p
a’; ( smh(a? Lyp) + 7]1? cosh(al} Ly)) 0 —a‘; i—d 0
0 cosh(a}l (Xsre — Lp)) sinh(a? (Xsre — Lp)) — cosh(a? (Xsre — L))
0 oc? sinh(a? (Xsre — Lp)) ocjip cosh(a? (Xsre — Lp)) —a? sinh(a? (Xsre — L))
(25)
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M- = 26
) 0 (26)
Hf —rflf

And we will solve it with the solve_linear_system_LU method of sympy.
For the Ef(X,.) coefficient, we obtain:

Ef(XSTC) == (27)

with:

e}-(XSTc) = QIf)\Pr? cosh (a? (L - X))
efc (Xsre) = —a?fyf)\P cosh (—La? + Lpa]lc) + Lpa?)
+ a?'yf)\P cosh (La? — Lpa? + Lpaf)
— a?)\P sinh (—La? + Lpa? + Lpa?)
+ a?)\P sinh (LafD - Lpa}j + Lpa}g) (28)
+ a?vf)\D cosh (—La? + Lpa? + Lpa}))
+ a})fyf)\D cosh (La? — Lpa? + Lpa?)
+ ozjlc))\D sinh (—La? + Lpa? + Lpa?)
+ a}))\D sinh (LOz]’cj — Lpa}’cj + Lpaf)

From this calculus, we can write the PSP at the soma on the form:

5AU(X = 0, XSTC, f) == Kf(Xsrc) (,Uv(Xsrc) - Erev) g(f) (29)

where K(X,.) given by:

Kf (XSTC>

{ Af(Xare) VXape € [0, L] (30)

Ef(Xs'r'c) VXS7-C € [vaL]

This is obtained by taking a unitary current Iy = 1 in the previous calculus.

4 Deriving the power spectrum of the membrane
potential fluctuations

The calculus rely on the ability to obtain the power spectrum of the membrane
potential fluctuations at the soma Py (f).



This can be obtained from shotnoise theory (Daley and Vere-Jones, 2007)
(see also El Boustani et al. (2009) for an application similar to ours), the general
form of the power spectrum density can be expressed as:

Py(f) = 3" Nugn Fagneh ey [PSPoya(F)]2
{syn}

(31)

where {syn} is the set of identical synapses, each having Nj,, synapses, a
Poisson release probability: v, and creating a post-synaptic event PSP, (t).
In addition, Fyynen is @ synchrony factor (depending on the variable s in the
model), it accounts for the effects of the synchronous arrivals of presynaptic
events. Given the synchrony generator considered in the main text, the syn-
chrony factor takes the form:

Fsynch = (]- - 5) + (8 - 32)22 + (82 — 83)32 + 8342
(32)

because single events arise with a probability 1 — s, double events with a
probability s —s? (and the PSP are squared in Eq. 4, hence the 22 factor), etc...
Now obtaining the power spectrum density Py (f) in our situation requires
to explicit the sum over synapses: > (syn}’ In our cases, we need to sum over 1)

their type (excitatory/inhibitory, > ), 2) their location (we will integrate

se{e,i}
over the dendritic length fOL dx) 3) branches.

L
P(f)= dmps(dtgf%t%) oLEE) B va(2) [|60(0, 2, )2
se{e,i} 0
+ 7 Dils ds Feynen vi(0) 00:(0,0, )|
(33)

where 6v,(0, z, f) is given by Eq. 29 (note that the dependency on synaptic
type s comes from the reversal potential term E,., in Eq. 29). The factor
2l 5= ) corresponds to the sum of the synapses over the different branches at
the distance x. The term (dt 2-3 L¥J) is the diameter of the branches at the
distance x.

The last term in Eq. 33 corresponds to the contribution of somatic inhibitory
synapses (number of somatic inhibitory synapses: 7 D; ls dg.

5 Deriving the fluctuations properties (uy, oy, 1)

The final expressions for the fluctuation propeorties as a function of (12,7, v, v, s)

e Vi s Ver Vi
are thus given by:

10



e Ly we obtain the mean of the fluctuations at the soma by taking py (0)
in Equation 8.

e oy : we obtain the standard deviation of the fluctuations from the power
spectrum density in Equation 33 and the expression:

ﬁ=4mm# (34)

This integral expression was discretized and evaluated numerically

e Ty: we obtain the autocorrelation time of the fluctuations from the power
spectrum density in Equation 33 and the expression (Zerlaut et al., 2016):

:}(IRPV(f)df)—l

2% Py(0) (35)

A%

This integral expression was discretized and evaluated numerically
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