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S1 Appendix

Proof of wave existence

Bistable case

We begin with the case where a > 1. Then the stationary points w = 0 and w = 1− b
of the corresponding equation dw/dt = F (w) are stable. Instead of the second-order
equations in (20) we will consider the systems of the first-order equations:

w′ = p, p′ = −cp− kw(1− b− w) (1)

and

w′ = p, p′ = −cp− kw(1− a− w). (2)

Fig 1. Trajectories of systems (1) and (2) for c = c1 (solid lines) leaving the saddle
point (1− b, 0) and approaching the saddle point (0, 0). They intersect at w = w1,
that is w(0) = w1 and w(cτ) = w0. The same trajectories for c = c2 (dashed lines).

Consider the trajectory γ1 of the first system for c = c1 leaving the saddle point
(1− b, 0) in the half-plane p < 0, and the trajectory γ0 of the second system for c = c1
approaching another saddle point (0, 0) from the same half-plane.

Consider p as a function of w for the solutions of systems (1), (2), and denote by
p1(w; c1) the function corresponding to the trajectory γ1. Similarly, let p0(w; c1) be
the function corresponding to the trajectory γ0. Due to the properties of systems (1),
(2), both these functions are defined on the interval 0 ≤ w ≤ 1− b, and

p0(0; c1) = 0, p0(1− b; c1) < 0; p1(0; c1) ≤ 0, p1(1− b; c1) = 0.

Then there is a solution of the equation
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p0(w; c) = p1(w; c) (3)

(c = c1) for some w1 ∈ (0, 1− b). We have

dp0(w1; c1)

dw
= −c1 −

kw1(1− a− w1)

p0(w1; c1)
< −c1 −

kw1(1− b− w1)

p1(w1; c1)
=

dp1(w1; c1)

dw
. (4)

Therefore solution of Eq (3) in the interval (0, 1− b) is unique.

Lemma 1. Solution w1 of Eq (3) is a decreasing function of c. Moreover, w1(c) = 0
for c ≥ c0, and w1(c) → 1− b as c → −∞. Here c0 is the minimal speed for there
exists a [0, 1− b]-trajectory of systems (1).

Proof. It can be easily verified that

p0(w; c2) > p0(w; c1), p1(w; c2) > p1(w; c1), 0 < w < 1− b

for c2 < c1 (Fig 1). Therefore w1(c2) > w1(c1).
Let us note that (0, 0) is a stable node of system (1) if c ≥ 2

√
k(1− b), and

(1− b, 0) is a saddle point. If the previous condition on c is satisfied, then there is a
trajectory connecting them such that it entirely belongs to the half-strip
0 < w < 1− b, p < 0. If c < 2

√
k(1− b), then the trajectory connecting these

stationary points exists, but it does not belong to the half-strip.
Thus, p1(0; c) = 0 for c ≥ 2

√
k(1− b). Moreover p0(w; c) < p1(w, c) for

0 < w ≤ 1− b. Indeed, since p0(0; c) = p1(0; c) = 0, then this assertion follows from
the estimate (4) for the derivatives at the intersection point.

It remains to verify that w1(c) → 1− b as c → −∞. It follows from the
monotonicity of solutions with respect to c: the function p0(w; c) increases and the
function p1(w; c) decreases for each w as c decreases.

�
By virtue of Lemma 1, there exists a unique value c = c0 such that w1(c0) = w0. The
following lemma gives a condition under which c0 > 0.

Lemma 2. Let w1(c0) = w0. Then c0 > 0 if and only if

3(a− b)w2
0 < (1− b)3. (5)

Proof. It is sufficient to compare the values of the functions p0(w; c) and p1(w; c) for
w = w0 and c = 0. Namely, we require that p0(w0; 0) > p1(w0; 0). From (1) we have
for c = 0:

p
dp

dw
= −kw(1− b− w).

Integrating this equation between w0 and 1− b, we obtain

p21(w0; 0) = 2k

(
1

6
(1− b)3 − 1− b

2
w2

0 +
1

3
w3

0

)
.

Similarly, from (2),

p20(w0; 0) = 2k

(
a− 1

2
w2

0 +
1

3
w3

0

)
.

Condition (5) follows from the inequality p21(w0; 0) > p20(w0; 0).
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�
We can now prove the theorem on the existence of waves.

Theorem 3. Let a > 1, 0 < w0 < 1− b and condition (5) be satisfied. Then for any
τ > 0 there is a unique positive value of c for which there exists a solution of problem
(19)-(21).

Proof. By virtue of Lemmas 1 and 2, there exists a unique value c0 > 0 such that
w1(c0) = w0. Let us choose some c such that w1(c) > w0 and consider the second
equation in (20). Then w(0) = w1(c) and w(x0) = w0 for some x0 > 0. We will show
that we can choose c such that x0 = cτ .

Let us determine how x0 depends on c. Consider the trajectories of systems (1), (2)
for c1 and c2 (Fig 1). If c2 < c1, then

p0(w; c1) < p0(w; c2), w0 ≤ w ≤ w1(c1). (6)

Hence x0(c2) > x0(c1). Indeed, the arc of the trajectory p0(w; c2) consists of two parts.
The first one between the values w0 and w1(c1), the second one between the values
w1(c1) and w1(c2). Therefore we can set x0(c2) = x1(c2) + x2(c2), where x1(c2) and
x2(c2) are the lengths of the intervals corresponding to these arcs. It follows from
inequality (6) that x1(c2) > x0(c1). Then we get x0(c2) > x0(c1).

Thus, x0(c0) = 0 and x0(c) is a decreasing function. Since c0 > 0, then there exists
a unique positive solution of the equation x0(c) = cτ .

�

Monostable case

As above, we consider problem (18), (19) with function (17) and reduce it to problem
(19)-(21). We will assume in this section that 0 < a < b < 1 and 0 < w0 < 1− b. Then
system (1) has two stationary points for 0 ≤ w ≤ 1, (0, 0) is a a node or a focus,
depending on the value of c, and (1− b, 0) is a saddle point. System (2) has only one
stationary point (0, 0), which is a node or focus. We suppose that c ≥ 2

√
(1− a).

Then the point (0, 0) is a stable node for both systems.

Theorem 4. Suppose that 0 < a < b < 1 and 0 < w0 < 1− b. Then for any
c ≥ 2

√
(1− a) there exists a solution of problem (18), (19) with function (17).

Proof. Consider the function p1(w; c) with c ≥ 2
√
(1− a) corresponding to the

trajectory of system (1) leaving the stationary point (1− b, 0) into the half-plane p < 0.
It approaches the point (0, 0) since c is greater than the minimal wave speed
2
√

(1− b) for this system. Hence p1(0; c) = p1(1− b; c) = 0.
Let p0(w; c) be the function corresponding to a trajectory of system (2)

approaching the stationary point (0, 0) and such that

p0(w1; c) = p1(w1; c) (7)

for some w1 ∈ (0, 1− b). Then

dp0(w1; c)

dw
= −c− w(1− a− w1)

p0(w1; c)
> −c− w(1− b− w1)

p1(w1; c)
=

dp1(w1; c)

dw
. (8)

This inequality determines the mutual direction of the trajectories of systems (1) and
(2) at the intersection points (Fig 2).

Set

p(w) =

{
p0(w; c) , 0 ≤ w ≤ w1

p1(w; c) , w1 ≤ w ≤ 1− b
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Fig 2. Trajectories of systems (1) and (2) in the monostable case.

and the corresponding function w(x) such that w′(x) = p(w(x)). It is a solution of
equations (20). It is continues together with its first derivative. We have w(0) = w1,
w(x0) = w0. We need to choose the value w1 in order to satisfy the last condition in
(21), that is x0 = cτ .

Let us note that for any c ≥ 2
√

(1− a), all trajectories of system (2) crossing the
points (w, p1(w; c)) on the trajectory of system (1) approach the stationary point
(0, 0). If we vary w1 from w0 to 1− b, then the corresponding value of x0 increases
from 0 to some value which is finite since (1− b, 0) is not a stationary point for system
(2). Therefore there exists a maximal delay τ = τm for which the solution remains
monotone as a function of x. For τ > τm we consider the intersection with the
trajectory of system (1) leaving the stationary point (0, 0) in the half-plane p > 0 (Fig
2). Therefore for any τ > 0 there exists a value w1 such that x0 = cτ . If w1 > 1− b,
then the solution is not monotone.

�
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