
S2 Text - Evaluation of performance of multi-
threaded and pipelined generation of compressed
BAM file

We evaluated the performance of non-pipelined code by measuring the runtime
for generating a compressed BAM file in samtools to evaluate the advantage of
the pipelined code that generates a compressed BAM file. An uncompressed
BAM file was used to remove the cost of SAM parsing. The standard library
that was installed on the operating system (zlib) was used to compress BAM
blocks on both samtools and sam2bam.

The steps in generating a compressed BAM file are not pipelined in samtools,
which has a main loop that sequentially performs three steps: grouping the
binary alignments into blocks until a buffer is full, compressing the blocks on
the buffer, and writing the compressed blocks to a file. Compressing the blocks
is the most time-consuming step, but it can be done by using multi-threads.

The experimental results revealed that the throughput of samtools for gen-
erating a compressed BAM file was 38% that of sam2bam without hardware
compression. This is because the multi-threads for compression can only run
periodically when the buffer is full. The steps in generating a compressed BAM
file to continuously run the compression threads should be pipelined so that
the threads can compress the blocks without pauses. That is, the compression
threads should receive the blocks from a separate thread that groups the align-
ments into blocks. Also, when they finish compression, they should receive the
next blocks without having to wait until the current compressed blocks have
been written to a file.

1


