
S7 Text. Analytical solutions for the mean cumulative number of
infections for some special cases. Here we present the analytical solutions for the
mean cumulative number of infections for the ‘Self-Correcting Poisson’ model, and for
the ‘Poisson with Feedback’ model with the further conditions �d = �r = 0

Self-Correcting Poisson model
Equations (5)-(8) can be rewritten as:
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its continuous counterpart is the differential equation (with ⌧ = tj � tj�1
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Poisson with Feedback model and no depletion of susceptibles
In this case the analogue of equation Eq (11) is:
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where the term [NH � CH(tj�1

)]is replaced with NH (as there is no depletion of
susceptibles, i.e. NH >> CH) and the infection prevalence in humans is given by
IH(tj�1)

NH
. If �d = �r = 0, then (see Eq (12)) IH(tj) = CH(tj) and Eq (S3) can be

rewritten as:
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its continuous counterpart is the differential equation:
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whose solution is
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Poisson with Feedback model
When �d = �r = 0, from Eq (12) IH(tj) = CH(tj) and therefore equation (11) can

be rewritten as:
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its continuous counterpart is the differential equation:
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whose solution is:
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Note, if ⌘R(NR)PrR(NR)�R = 0 (no zoonotic spillovers), Eq (S9) reduces to the
common logistic equation for population growth
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with growth rate r = ⌘H�H and carrying capacity K = NH whose solution is:
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