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Generation of the independent structures

The BEMD technique is similar in spirit to the replica exchange method combined with
metadynamics. In the former, several replicas of the system are simulated at different
temperatures and each system is allowed to switch from one temperature to another
with the Boltzmann probability. The latter keeps a memory of the visited states of
particular collective variables (e.g. Ramachandran angles, hydrogen bonds or
α-structured regions) and biases the system to explore unvisited states.

The BEMD, however, instead of switching between different temperatures, it
involves switching between the collective variables that are selected for biasing. In
particular, we use three collective variables: α-helix RMSD, antiparallel β-strand RMSD
and parallel β-strand RMSD, where RMSD is measured with respect to small ideal
structures. Ideal structures are defined as those calculated as an average of secondary
structure motifs found in experimental structures. Thus, every 6-residue segment is
compared to an ideal α-helix, and every pair of 3-residue segments is compared to an
ideal parallel or antiparallel β-strand. A more detailed explanation of the collective
variables can be found in [1].

Our system is simulated with the use of six replicas, where one is unbiased; three of
them have an α bias, each on a different third of the protein sequence; and the other
two have antiparallel and parallel β biases throughout the whole sequence. The
simulations are run using implicit water, with an integration step of 0.2 fs, and at a
temperature of T = 400 K (controlled by the Nosé-Hoover thermostat). The higher
temperature helps a faster exploration of the energy landscape [2]. The biases are added
to the potential in the form of the Gaussian functions of height 20.92 kJ/mol and width
0.3 nm every 10 ps, and exchanges between biases are allowed every 25 ps. We save the
coordinates of all atoms in the system every 5 ps, which generates a snapshot.

For computational efficiency, it is better to keep a constant bias in every replica and
transfer the atom coordinates from one to another, instead of having the atom
coordinates fixed in a replica and switching the biases. Thus, the snapshots we obtain
from the simulation are not continuous with respect to time, but are attached to the
particular bias, since each set of the coordinates jumps around every few steps. In order
to recover time-ordered trajectories, we use our own script.

Once the snapshots are properly ordered in time we obtain six trajectories with a
snapshot taken every 5 ps. At this stage, a three-sieve method is applied in order to
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obtain structures that are temporally and structurally independent. In the first step,
the DSSP program is used to obtain the SS content for each snapshot. Those with
SS < 30 % are discarded, while the rest are considered structured and forwarded to the
second sieve.

The second sieve is used to find temporally-uncorrelated structures from those
obtained in the first stage. To this end, we select the end of a time cluster to be at the
point where two structured conformers are separated by at least 50 ps of unstructured
ones. The conformer in each cluster with higher SS is chosen to represent the cluster
and proceeds to the third and final sieve. S9 Fig. presents an example of the first and
second sieve of one of the replicas. In the top panel, the temporal evolution of SS is
shown together with the cluster representatives. The red box marks a 50 ns time frame
which is then expanded in the middle panel. In this panel, the clusters obtained after
the second sieve in this time frame are also marked with a red line. The bottom panel
shows that each representative is not correlated with its predecessor, since their mutual
RMSD is always greater than 2 Å [3].

The third sieve checks for the structural independence, and is carried out on all
time-cluster representatives irrespective of the replica they originate from. Conformers
coming from the second sieve are classified according to their structural independence.
In order to study this feature, we use TM-score [4] and our version of the TM-align
algorithm [5] in which the determination of the secondary structure is based on the
results coming from DSSP. Cossio et. al. [2] have shown the modified version to perform
better.

TM-score is a value that measures similarity between two proteins according to an
atomic alignment, which can be based either on sequence or secondary structure. In this
case, sequential alignment is not needed since all conformers contain the same sequence.
After the alignment is done, only the aligned atoms are taken into account by summing
the inverse of the distances between them, then normalizing to the total length of the
protein, as in equation 1, where na is the number of aligned atoms, n is the length of
the protein, di is the distance between the atoms in the i-th pair and d0 is a standard
distance used for normalization. The max function refers to all possible alignments.

TM = max
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n

∑
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1

1 +
(
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d0

)2
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Therefore, the TM-score would be 100 % if all the atoms in the proteins could be
aligned with one another, and in this alignment they all were at the same position
(meaning the distance between them would be 0). This process results in a matrix of
scores that rate their similarity in a pair-wise fashion. As in ref. [2], two conformers are
considered neighbors if their TM-score is greater than 45 %.

At this stage, we identify the conformation which has the highest number of
neighbors. This conformation and its neighbors are denoted as a cluster, which is
removed from the pool. The conformer in the cluster with the largest SS is selected to
belong to the final set of structures. This procedure is then repeated with the
conformations still remaining in the pool, until the pool becomes empty.

Therefore, after the three sieves, the structures obtained are temporally uncorrelated
and structurally independent. For the studied sets of Qn with n = 16, 20, 25, 30, 33, 38,
40, 60 and 80, as well as for V60, the independent conformers can be found in
www.ifpan.edu.pl/~cieplak/POLYQ.
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The simply stiff limit of the average coordination number

Following the terminology used by Maxwell, we define an n-particle system with
pairwise interactions to be stiff if it contains no pairs of particles that can be moved
apart without affecting a bond. Furthermore, a stiff system is considered simply stiff if
the removal of any bond will turn it into being not stiff.

The coordination number (z) of a particle is defined as the number of bonds it
establishes with others.

The stiffness of the n-particle system depends on the dimensionality (D) of space in
which the particles are set and on the number of bonds (b) between them. Instead of b,
we can discuss the dependence on the average coordination number because the two
quantities are closely related. It is easy to see that the sum of the coordination numbers
of all of the particles in the system is equal to the double of the number of bonds. This
is because each bond connects two particles and thus it counts twice. Thus, the average
coordination number for the system is given by

〈z〉 =
2b

n
(2)

For particles moving along a line (one-dimensional system, one degree of freedom), a
system is simply stiff if b = n− 1. This equation can be proved by using the method of
mathematical induction. For n = 2, the system is simply stiff when one bond is present.
If we have a simply stiff system of n particles and we add one more, then only one extra
bond is needed to ensure that this new particle will not be able to move away from any
other. Therefore, using eq. 2, the average coordination number for a simply stiff 1D
system is

〈z〉1D = 2− 2

n
(3)

For 2D and 3D systems, the number of bonds in a simply stiff particle system is
b = 2n− 3 and b = 3n− 6, respectively. The proof can be obtained in analogy to the 1D
case. Therefore, the average threshold coordination number is given by

〈z〉2D = 4− 6

n
(4)

〈z〉3D = 6− 12

n
(5)

In the thermodynamic limit (n→∞) of a 3D system the threshold 〈z〉 is 6, as
shown by Maxwell. For finite protein-like systems, this threshold value is reduced. In
the cases of this study, simply stiff systems should correspond to 〈z〉 = 5.4 if n is 20 and
〈z〉 = 5.8 if n is 60.

Lack of dependence of Fmax on the structural descriptors

To establish the degree of correlation between Fmax and the the structural descriptors,
we performed a linear fit of the data as shown shown in various plots throughout the
paper. The combined results on the slopes and the Pearson coefficients are shown in
S1 Tab. We conclude that even if a trend could be established given the non-zero slope
coefficients, a linear relation cannot be established since Pearson’s R2 coefficient is
never sufficiently close to 1. Nonetheless, statistical independence between two events
cannot be inferred simply from the scatter plot.

Indeed, lack of correlation –i.e. the data cannot be fitted with a straight line– does
not rule out the possibility that other (non-linear) relations could be established. In
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order to figure out whether the Fmax is indeed independent of the structural descriptors
used here, we performed another statistical analysis by applying the definition of
statistical independence: Two random variables X and Y , distributed according to the
cumulative density functions (CDF) FX(x) and FY (y), respectively, are independent if
and only if FX(x) · FY (y) = FX,Y (x, y).

To this end, we studied the joint CDF of Fmax with each of the other descriptors
and compared it to the product of the independent probabilities. S10 Fig. depicts the
results of this study for CATH in the form of the absolute difference between each pair
of two-dimensional distributions. The rest of the sets are not shown but the results are
equivalent. We can observe that the difference between the two is below 5 % for SS, CO
and τ; and below 10 % for the rest. Thus, we assume the CDFs to be approximately
equal and thus Fmax to be independent of the descriptors.
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