
Supporting Text for “Accurate Computation of Survival Statistics in
Genome-wide Studies”

Fabio Vandin1,2,3, Alexandra Papoutsaki2,3, Benjamin J. Raphael2,3,*, and Eli Upfal2,*

1Department of Mathematics and Computer Science, University of Southern Denmark, DK.
2Department of Computer Science, Brown University, USA.

3Center for Computational Molecular Biology, Brown University, USA.
*Corresponding authors.

Implementations of the log-rank test
Common statistical packages provide implementations1 of the log-rank test for the following distributions:

• asymptotic conditional: SAS (LIFETEST), R and S-Plus (survdiff), SPSS, GraphPad Prism.

• asymptotic permutational and exact permutational: StatXact, R (surv test).

Background
Model

Suppose a set G of genes was sequenced in a collection P of patients, all of whom have the same disease.
Each sequenced gene2 g ∈ G partitions the set of patients into two subsets: the P(g), with patients with
a mutation in g, and the P̄(g), with patients with no mutation in g. The goal is to identify genes whose
mutational status is highly correlated with the survival time, in the sense that the survival distribution of
patients in P(g) is different from the survival distribution of patients in P̄(g). A key challenge in survival
analysis is dealing with censored patients whose exact survival time is unknown. Censoring occurs for a
variety of reasons, but the most common is that the study only lasts for a finite amount of time, and some
fraction of patients remain alive at the conclusion of the study. In addition, during the course of the study
patients may leave the study for a variety of reasons, that are unrelated to their treatment or disease state.
The censored survival time is the last time the patient was observed in the study, which is a lower bound for
the patient’s survival time3. Survival analysis assumes that censoring is non informative, i.e. the event that a
patient is censored is independent of the patient’s survival beyond the censoring time. The log-rank test [1]
(or family of tests) is the most commonly used non-parametric test for comparing the survival distribution
of two or more populations with data subject to censoring. The advantage of this test is that it includes
the censored data in its statistic, rather then removing it from the data. Since a large fraction of patients
may be censored (e.g., up to 94% in the data below), it is not desirable to remove this “missing data” from
consideration. In the section below, we describe two different versions of the log-rank test, the conditional
log-rank and the permutational log-rank test.

1This information was derived directly from the software manual and/or the publication cited in the manual.
2One may also consider mutations at different levels of resolution; e.g. partitioning patients according to mutations in individual

nucleotides or protein domains.
3In some references patients who survived the study are called right censored and patients who withdrew from the study are

called randomly censored.

1

Basic survival analysis: the log-rank test

We focus on the two-samples log-rank test of comparing the survival distribution of two groups, P0 and P1.
Let t1 < t2 < · · · < tk be the times of observed not censored events. Let Rj be the number of patients at
risk at time tj , i.e. the number of patients that survived (and were not censored) up to this time, and let Rj,1

be the number of P1 patients at risk at that time. Let Oj be the number of observed, not censored events in
the interval (tj−1, tj], and let Oj,1 be the number of these events in group P1. If the survival distributions
of P0 and P1 are the same then in expectation E[Oj,1] = Oj

Rj,1

Rj
. The log-rank statistic [1, 2] measures the

sum of the deviations of Oj,1 from this equal distribution4 expectation,

V =
k∑

j=1

(
Oj,1 −Oj

Rj,1

Rj

)
. (1)

Since the log-rank statistic depends only on the order of the events and not on their actual times, we
can w.l.o.g. treat the survival data (including censored times) as an ordered sequence of events, with no
two patients having identical survival times. Let ni = |Pi| be the number of patients in each set and let
n = n0 + n1 be the total number of patients. We represent the data with two binary vectors x ∈ {0, 1}n
and c ∈ {0, 1}n, where xi = 1 if the ith event was in P1 and xi = 0 otherwise; ci = 0 if the ith event was
censored and ci = 1 otherwise. Note that n1 =

∑n
i=1 xi. In this notation the log-rank statistic is

V = V (x, c) =

n∑
j=1

cj

(
xj −

n1 −
∑j−1

i=1 xi
n− j + 1

)
. (2)

Clearly, the further V is from zero, the more likely it is the case that the two survival distributions are
different. To quantify this intuition, we define the null hypothesis of no difference in the survival distribu-
tions of the two groups, and then compute the distribution of the test statistic V under the null hypothesis.
Two possible null distributions are considered in the literature, defining two versions of the log-rank test (S5
Fig.).

Conditional log-rank test [16]. In this version, the null distribution is defined by conditioning on Oj and
Rj,1 for j = 1, . . . , k. If at time tj there are a total of Rj patients at risk, including Rj,1 patients in P1, then
under the assumption of no difference in the distributions of P0 and P1, we expect the Oj events at that time
to be split between P0 and P1 according to a hypergeometric distribution with parameters Rj , Rj,1, and Oj .

Under this null distribution the expectation of the log-rank statistic is 0, and its variance is σ2h =∑k
j=1Oj

R1,j

Rj

(
1− R1,j

Rj

)
Rj−Oj

Rj−1 (Mantel-Haenszel variance [16]).
Note that this test does not assume equal distribution of censoring in the two groups. This property is

important in clinical trials when patients in the two groups are subject to different treatments that may affect
their probability of leaving the trial. In the case of cancer mutation data, under the null hypothesis it is
unlikely that the presence of a mutation changes the probability that a patient leaves the trial, and thus we
do not face this difficulty. However, a major disadvantage of this test is that the number of events in P1,
generated by this distribution, is a random variable that is equal to n1 only on average. In the case of an
unbalanced population, where n1 is small, it can significantly affect the computed p-value.

Permutational log-rank test [2]. In this version, we observe that under the null hypothesis the distribution
of the group labels, xi’s, is independent of the survival information. Therefore, we consider the sample
space of all

(
n
n1

)
possible locations of the n1 patients of group P1 in the vector x, and each possibility is

4In some clinical applications one is more interested in either earlier or later events. In that case, the statistic is a weighted sum
of the deviations. Our results easily translate to the weighted version of the test.

2

assigned equal probability
(
n
n1

)−1. For this reason, the resulting distribution is usually called permutational
distribution of the log-rank statistic [2]. Under this null hypothesis the expectation of the log-rank statistic
is 0, and the variance [19] is σ2p = n1n2

n(n−1)

(
k −

∑k
i=1

1
Ri

)
. Note that in this distribution the number of

patients in P1 is exactly n1. The validity of this log-rank test depends on the probability of censoring being
equal in the two groups. As discussed above this assumption holds in our application.

Estimating the p-value

Under both null distributions above, the expectation E[V] = 0. Given an observed value v, its p-value is
Pr(|V | ≥ |v|). In the two null distributions the prefix sums of the log-rank statistic define a martingale,
and therefore, by the martingale central limit theorem [3], the normalized log-rank statistic V/σ, where σ
is either σh or σp, has an asymptotic N (0, 1) distribution, which gives an easy method for computing the
p-value. Furthermore, asymptotically the two variances σ2h and σ2p are the same [17], thus for large balanced
populations the two versions of the test give the same results. Therefore, the distinction between the two
versions of the test is mostly ignored in the literature, although there is some discussion of which variance
is the appropriate to use [17, 19].

The situation is drastically different in the setting of genome-wide cancer survival analysis. As was
reported in [10, 11] and we show in the next section, the normal approximation gives a poor estimate for
the p-value in the range of population sizes inherent in the genome-wide association studies. Thus, we need
an efficient algorithm for computing a correct estimate of the p-values that does not depend on the Normal
approximation. Furthermore, we also report that in this range of parameters, the p-value of the log-rank
statistic is very sensitive to the choice of null distribution: since the conditional distribution matches the
problem parameters only in expectation, we prefer the permutational null distribution that matches exactly
the problem’s parameters.

Accuracy of Asymptotic Approximations
We applied the log-rank test based on asymptotic approximations to randomly generated survival and mu-
tation data. We focused on the case of unbalanced populations. We compared the p-values obtained from
the asymptotic approximations with the uniform distribution that is expected under the null hypothesis. We
use n to denote the total number of samples, and n1 the number of samples in the small population. S1a
Fig. shows that even when the number of patients in the small population is large (n1 = 100), when the
imbalance between populations increases, the accuracy of the asymptotic approximation decreases. S1b Fig.
shows that for a fixed ratio n1/n, the asymptotic approximation improves when the total populations size
increases. S1c Fig. shows that for a fixed n, the asymptotic approximation improves when the imbalance
decreases. In addition to the normal approximation, S1d Fig. includes the χ2 approximation, and shows
the results considering 105 data points with n = 500 total samples, n1 = 5%n samples with a mutation
in the gene, and same survival distribution for all patients. In particular, the survival time comes from an
exponential distribution with the same expectation (equal to 30), and censoring variable from an exponential
distribution resulting in 40% of censoring. These results show that with n = 100, n1 must be > 20%n for
the asymptotic permutational approximation to be accurate, while with n = 500, n1 must be ≥ 5% for the
asymptotic permutational approximation to be accurate. We also used the method surv test from the
R package coin to compute asymptotic p-values. We tested the case of n = 500, n1 = 1%n, and 0% or
40% censoring. The resulting distribution of p-values (S1e Fig.) is consistent with the results obtained in
the simulations above. We also repeated the experiment of S1d Fig. with 60% censoring, obtaining similar
results (S1f Fig.).

3

Comparison of Exact Tests on Synthetic Data
Comparison of Exact Distributions

We find that the p-values from the permutational exact test are significantly closer (p < 10−3) to the empir-
ical p-values than the p-values obtained from the conditional exact test (S2 Fig.).

We compared the accuracy of exact p-values for the permutational and conditional distributions in our
setting of unbalanced small populations using synthetic data. We generate synthetic data using two related
but different procedures. In the first procedure, we mutate a gene g in exactly a fraction f of all patients.
In the second procedure, we mutated a gene g in each patient independently with probability f . The sec-
ond procedure models the fact that mutations in a gene g are found in each patient independently with a
certain probability (that depends on the background mutation rate, the length of the gene, etc.). Thus, when
repeating a study on a cohort of patients of the same size only the expected number of patients in which g is
mutated is the same, and the observed number may vary. In both cases the survival information is generated
from the same distribution for all patients. The survival time comes from the exponential distribution with
expectation equal to 30, and censoring variable from an exponential distribution resulting in 40% of censor-
ing in expectation. In S2a Fig. we compare the p-values computed from the exact permutational test and
the exact conditional test with the empirical p-values for the first distribution, while in S2b Fig. we compare
the p-values computed from the exact permutational test and the exact conditional test with the empirical
p-values for the second distribution. In particular, we generated 10000 random input instances according to
the first or the second distribution, and for each random input instance we computed the empirical p-values
by using 10000 random instances generated (from the corresponding distribution) independently for each
p-value and also computed the p-values from the two exact tests. In both cases the p-values (restricted to
p-values ≤ 0.01) from the exact permutational distribution have a higher R coefficient than the p-values
from the exact conditional distribution when compared to the empirical p-values (considering the −log10
p-values in order to compute the R coefficient). Therefore the p-values from the permutational exact test are
closer to the empirical p-values than the p-values obtained from the conditional exact test.

Algorithms
As shown by the results in previous sections, to carry out an effective genome-wide survival analysis for
cancer somatic mutation we need an accurate estimate of the log-rank statistic p-values in the permutational
null distribution.

While the exact p-value in the conditional test can be computed in quadratic time [42, 33] no polyno-
mial time algorithm is known for the problem of computing the exact p-value for the permutational test.
Abd-Elfattah and Butler [34] use saddlepoint methods to determine the mid-p-values for the permutational
distribution. Heuristic methods may be derived from solutions to related problems. In particular the method
of Pagano and Tritchler [37], based on the Fast Fourier Transform (FFT), may be adapted to compute some
approximation of the exact p-value in polynomial time, but no guarantee on the accuracy of the approxi-
mation is provided by their method. Branch and bound methods (in the spirit of the method proposed by
Bejerano et al. [38]) may be used to compute the exact p-value, but may require exponential time in the worst
case. Note that since p-values can be really small, we do not want to use an MCMC approach, that requires
to sample a number of random permutations at least proportional to c−1 in order to obtain an estimate for a
p-value equal to c.

In the permutational distribution n and n1 are fixed, and thus computing the p-value is equivalent to
solving the following counting problem.

More Extreme Assignments Counting Problem: Given n, n1 ∈ N, with n1 ≤ n, v ∈ R and c ∈ {0, 1}n
determine the number of vectors x ∈ {0, 1}n that satisfy:

∑n
i=1 xi = n1 and |V (x, c)| ≥ v.

Dividing the number of vectors x by
(
n
n1

)
, which defines the sample space size, gives the p-value of v.

4

Based on the similarity between this problem and Knapsack Counting Problem [41], we conjecture that the
problem may also be #P -complete.

FPTAS for the permutational distribution

We provide a Fully Polynomial Time Approximation Scheme (FPTAS) to estimate the p-value from the
permutational distribution, i.e. an algorithm that given n, n1, c, and v, for any ε > 0 computes an ε-
approximation of Pr(|V (x)| ≥ v), that is a value p with Pr(|V (x)| ≥ v) ≤ p ≤ (1 + ε)Pr(|V (x)| ≥ v) in
time that is polynomial in n and ε−1. The FPTAS is derived from a pair of recurrence relations that compute
the exact probability, but may not terminate in polynomial time. We then modify the process to obtain a
fully polynomial time approximation scheme.

Exact computation. Let Vt(x) =
∑t

j=1 cj

(
xj −

n1−
∑j−1

i=0 xi

n−j+1

)
be the test statistic V (x) at time t. Note

that since n, n1, and c are fixed, the statistic depends only on the values of x. Assume the observed log-rank
statistic has value v. The p-value of the observation v is the probability Pr(|V (x)| ≥ |v|) computed in
the probability space in which the n1 events of P1 are uniformly distributed among the n events. For any
0 ≤ t ≤ n and 0 ≤ r ≤ n1, let P (t, r, v) denote the joint probability Vt(x) ≤ v and exactly r events of P1

in the first t events,

P (t, r, v) = Pr

(
Vt(x) ≤ v AND

t∑
i=1

xi = r

)
.

Similarly, let Q(t, r, v) denote the joint probability of Vt(x) ≥ v and exactly r events of P1 in the first t
steps,

Q(t, r, v) = Pr

(
Vt(x) ≥ v AND

t∑
i=1

xi = r

)
.

At time 0,

P (0, r, v) =

{
1 if r = 0 and v ≥ 0
0 otherwise,

and Q(0, r, v) =

{
1 if r = 0 and v ≤ 0
0 otherwise.

Given the values of P (t, r, v) and Q(t, r, v) for all v and r, we can compute the values of P (t+ 1, r, v)
and Q(t, r, v) using the following relations:

If ct+1 = 1 then

P (t+ 1, r, v) = (1− n1 − r
n− t

)P (t, r, v+
n1 − r
n− t

) +
n1 − (r − 1)

n− t
P (t, r− 1, v− (1− n1 − (r − 1)

n− t
)), and

Q(t+ 1, r, v) = (1− n1 − r
n− t

)Q(t, r, v +
n1 − r
n− t

) +
n1 − (r − 1)

n− t
Q(t, r − 1, v − (1− n1 − (r − 1)

n− t
)).

If ct+1 = 0 then

P (t+ 1, r, v) = (1− n1 − r
n− t

)P (t, r, v) +
n1 − (r − 1)

n− t
P (t, r − 1, v), and

Q(t+ 1, r, v) = (1− n1 − r
n− t

)Q(t, r, v) +
n1 − (r − 1)

n− t
Q(t, r − 1, v).

The process defined by these equation guarantees that the n events include n1 events of P1. Thus, for
r 6= n1, P (n, r, v) = 0 and Q(n, r, v) = 0, and the p-value is given by5

Pr(|V (x)| ≥ |v|) = P (n, n1,−|v|) +Q(n, n1, |v|).
5In the exact computation Q(n, n1, V) = 1 − P (n, n1, V), but in the approximate algorithm below we need to compute each

of the probability functions separately.

5

The functions P (t + 1, r, v) and Q(t + 1, r, v) are step functions. To compute the function P (t + 1, r, v)
when ct+1 = 1, by the definition of P (t+ 1, r, v) we note that, for fixed r and t, its value changes only for
values of v in which P (t, r, v + n1−r

n−t) or P (t, r − 1, v − (1− n1−(r−1)
n−t)) change values. Thus, we need to

compute the function P (t + 1, r, v) only for such values of v, that can be readily obtained from the values
of v′ for which P (t, r, v′) and P (t, r − 1, v′) change value.

At t = 0 the function P (0, r, v) assumes up to 2 values. If P (t, r, v) assumes m(t, r) values and
P (t, r − 1, v) assumes m(t, r − 1) values, then P (t+ 1, r, v) assumes up to m(t, r) +m(t, r − 1) values.
Similar relation hold for P (t+ 1, r, v) when ct+1 = 0, and for computing Q(t, r, v) in the two cases. Thus,
in n iterations the process computes the exact probabilities P (n, r, v) and Q(n, r, v), but it may have to
compute probabilities for an exponential number of different values of v in some iterations.

Approximation Algorithm. We first note that since the probability space consists of
(
n
n1

)
equal prob-

ability events, all non-zero probabilities in our analysis are ≥ n−n1 . For 0 < ε < 1, fix ε1 such that
(1 − ε1)−n = 1 + ε. Note that ε1 = O(ε/n). We discretize the interval of possible non-zero probabilities
[n−n1 , 1], using the values (1− ε1)k, for k = 0, . . . , ` = −n1 logn

log(1−ε1) = O(ε−1nn1 log n). The approximation
algorithm computes estimates for P (t, r, v) and Q(t, r, v) in two separate processes.

Estimating P (t, r, v). Let P̃ (t, r, v) be a step function defined by a sequence of points vtk,r, k = 0, . . . , `.
The value of the function in the interval (vtk+1,r, v

t
k,r] is (1 − ε1)k, for v > vt0,r the value of the function

is 1, and for v < vt`,r the value of the function is 0. Consecutive points in the sequence may be the same
(vtk+1,r = vtk,r), in that case the value of P̃ (t, r, v) is (1−ε1)kv , where kv = arg maxk[v ≤ vtk,r]. (Note that
the sequence vtk,r, k = 0, . . . , ` is non-increasing in k, since larger k corresponds to smaller probability.)

For t = 0, we define P̃ (0, r, v) by the set of points v0k,0 = 0 and v0k,r = ∞ for r > 0, k = 0, . . . , `.
These functions satisfy P̃ (0, r, v) = P (0, r, v) for all r and v.

Assume that iteration t+ 1 starts with a set of functions P̃ (t, r, v), for r = 0, . . . , n1 such that for all r
and v

(1− ε1)tP̃ (t, r, v) ≤ P (t, r, v) ≤ P̃ (t, r, v).

We show that iteration t+ 1 computes functions P̃ (t+ 1, r, v) with the same approximation properties. (S6
Fig. shows how the approximation at time t + 1 is computed from the approximation at time t.)

To compute an estimate for the functions P (t+ 1, r, v), r = 0, . . . , n1, we use the relations given in the
exact computation, estimating P (t, r, v) by P̃ (t, r, v). In the case ct+1 = 1 we use

P̂ (t+ 1, r, v) = (1− n1 − r
n− t

)P̃ (t, r, v +
n1 − r
n− t

) +
n1 − (r − 1)

n− t
P̃ (t, r − 1, v − (1− n1 − (r − 1)

n− t
)),

and compute (for each r) the function at the 2` points corresponding to change in values in the functions
P̃ (t, r, v) and P̃ (t, r − 1, v):

vtk,r = v +
n1 − r
n− t

and vtk,r−1 = v − (1− n1 − (r − 1)

n− t
), for k = 1, . . . , `.

In the case ct+1 = 0 we use

P̂ (t+ 1, r, v) = (1− n1 − r
n− t

)P̃ (t, r, v) +
n1 − (r − 1)

n− t
P̃ (t, r − 1, v),

and compute the function (for each r) in the 2` points vtk,r and vtk,r−1.
Let v1 ≤ v2 ≤ · · · ≤ v2` be the 2` points for which the value of P̂ (t+1, r, v) was computed. We extend

the function P̂ (t+ 1, r, v) to a step function over all values of v, such that P̂ (t+ 1, r, v) = P̂ (t+ 1, r, vj),
where j is the largest index such that v ≥ vj .

6

Since we computed the function P̂ (t+ 1, r, v) in all points in which P̃ (t, r, v) and P̃ (t, r− 1, v) change
values, and by the assumptions on the values of P̃ (t, r, v), for all r and v we have

P̂ (t+ 1, r, v)(1− ε1)t ≤ P (t+ 1, r, v) ≤ P̂ (t+ 1, r, v).

We now approximate the function P̂ (t + 1, r, v) by a function P̃ (t + 1, r, v) that is defined by the
sequence of only ` values:

vt+1
k,r = arg max

v
[P̂ (t+ 1, r, v) ≤ (1− ε1)k], k = 0, . . . , `.

Consider a value v such that vt+1
k+1,r ≤ v < vt+1

k,r . We have:

P (t+ 1, r, v) ≤ P̂ (t+ 1, r, v) ≤ P̂ (t+ 1, r, vt+1
k,r) ≤ P̃ (t+ 1, r, vt+1

k,r) = P̃ (t+ 1, r, v), (3)

and

P (t+1, r, v) ≥ P̂ (t+1, r, v)(1−ε1)t ≥ P̂ (t+1, r, vt+1
k,r)(1−ε1)(1−ε1)t ≥ P̃ (t+1, r, v)(1−ε1)t+1. (4)

(The first inequality follows by the inductive assumption on P (t + 1, r, v) and P̂ (t + 1, r, v), the second
inequality by the definition of v and vt+1

k,r , and the third by the definition of P̃ (t+1, r, v).) Thus, our estimate
P̃ (n, n1,−v) for P (V (x) ≤ −v) = P (n, n1,−v) satisfies

P (n, n1,−v) ≤ P̃ (n, n1,−v) ≤ P (n, n1,−v)
1

(1− ε1)n
≤ P (n, n1,−v)(1 + ε).

Estimating Q(t, r, v). Recall that Q(t, r, v) is the probability of exactly r events of P1 in the first t steps
and the statistic at time t is ≥ v,

Q(t, r, v) = Pr

 t∑
j=1

cj

(
xj −

n1 −
∑j

i=1 xi
n− j

)
≥ v AND

t∑
i=1

xi = r

 .

Let Q̃(t, r, v) be a step function defined by a sequence of points vtk,r, k = 0, . . . , `. The value of the function
in the interval [vtk,r, v

t
k+1,r) is (1−ε1)k, for v < vt0,r the value of the function is 1, and for v > vt`,r the value

of the function is 0. Consecutive points in the sequence may be the same (vtk+1,r = vtk,r), in that case the
value of Q̃(t, r, v) is (1− ε1)kv , where kv = arg maxk[v ≥ vtk,r]. (Note that the sequence vtk,r, k = 0, . . . , `
is monotone non-decreasing in k, since larger k corresponds to smaller probability.)

For t = 0, we define Q̃(0, r, v) by the set of points v0k,0 = 0 and v0k,r = −∞ for r > 0, k = 0, . . . , `.
These functions satisfy Q̃(0, r, v) = Q(0, r, v) for all r and v.

Assume that iteration t+ 1 starts with a set of functions Q̃(t, r, v), for r = 0, . . . , n1 such that for all r
and v

(1− ε1)tQ̃(t, r, v) ≤ Q(t, r, v) ≤ Q̃(t, r, v).

We show then iteration t+ 1 computes functions Q̃(t+ 1, r, v) with the same approximation properties.
To compute an estimates for the functions Q(t + 1, r, v), r = 0, . . . , n1, we use the relations given in

the exact computation, estimating Q(t, r, v) by Q̃(t, r, v). In the case ct+1 = 1 we use

Q̂(t+ 1, r, v) = (1− n1 − r
n− t

)Q̃(t, r, v +
n1 − r
n− t

) +
n1 − (r − 1)

n− t
Q̃(t, r − 1, v − (1− n1 − (r − 1)

n− t
)),

7

and compute (for each r) the function at the 2` points corresponding to change in values in the functions
Q̃(t, r, v) and Q̃(t, r − 1, v):

vtk,r = v +
n1 − r
n− t

and vtk,r−1 = v − (1− n1 − (r − 1)

n− t
), for k = 1, . . . , `.

In the case ct+1 = 0 we use

Q̂(t+ 1, r, v) = (1− n1 − r
n− t

)Q̃(t, r, v) +
n1 − (r − 1)

n− t
Q̃(t, r − 1, v),

and compute the function (for each r) in the 2` points vtk,r and vtk,r−1.
Let v1 ≤ v2 ≤ · · · ≤ v2` be the 2` points for which the value of Q̂(t+1, r, v) was computed. We extend

the function Q̂(t+ 1, r, v) to a step function over all values of v, such that Q̂(t+ 1, r, v) = Q̂(t+ 1, r, vj),
where j is the largest index such that v ≥ vj .

Since we computed the function Q̂(t+ 1, r, v) in all points in which Q̃(t, r, v) and Q̃(t, r− 1, v) change
values, and by the assumptions on the values of Q̃(t, r, v), for all r and v we have

Q̂(t+ 1, r, v)(1− ε1)t ≤ Q(t+ 1, r, v) ≤ Q̂(t+ 1, r, v).

We now approximate the function Q̂(t + 1, r, v) by a function Q̃(t + 1, r, v) that is defined by the
sequence of only ` values:

vjk,r = arg min
v

[Q̃(j, r, v) ≤ (1− ε1)k], k = 0, . . . , `.

Consider a value v such that vt+1
k,r ≤ v < vt+1

k+1,r. We have:

Q(t+ 1, r, v) ≤ Q̂(t+ 1, r, v) ≤ Q̂(t+ 1, r, vt+1
k,r) ≤ Q̃(t+ 1, r, vt+1

k,r) = Q̃(t+ 1, r, v), (5)

and

Q(t+1, r, v) ≥ Q̂(t+1, r, v)(1−ε1)t ≥ Q̂(t+1, r, vt+1
k,r)(1−ε1)(1−ε1)t ≥ Q̃(t+1, r, v)(1−ε1)t+1. (6)

Thus, our estimate Q̃(n, n1, v) for Q(V (x) ≥ v) = Q(n, n1, v) satisfies

Q(n, n1, v) ≤ Q̃(n, n1, v) ≤ Q(n, n1, v)
1

(1− ε1)n
≤ Q(n, n1, v)(1 + ε).

From the discussion above the following theorem is readily derived.

Theorem 1. The algorithm above is a FPTAS for computing Pr(|V (x)| ≥ |v|).

Proof. We first consider the approximation ratio. Note that Pr(|V (x)| ≥ |v|) = Pr(V (x) ≥ |v|) +
Pr(V (x) ≤ −|v|); from the discussion above we have that Pr(V (x) ≤ −|v|) ≤ P̃ (n, n1,−|v|) ≤
Pr(V (x) ≤ −|v|)(1 + ε) and Pr(V (x) ≥ |v|) ≤ Q̃(n, n1, |v|) ≤ Pr(V (x) ≥ |v|)(1 + ε), therefore if we
define p̃ = P̃ (n, n1,−|v|) + Q̃(n, n1, |v|) we have that Pr(|V (x)| ≥ |v|) ≤ p̃ ≤ (1 + ε) Pr(|V (x)| ≥ |v|).

The run-time of each iteration is O(`n1) = O(ε−1nn21 log n) and there are n iterations, thus for any
ε > 0 the algorithm computes an ε-approximation in O(ε−1n2n21 log n) time.

8

FPTAS running time

We ran experiments to study how the running time of the FTPAS varies for different values of n, n1, and
ε. We also compared the running time of the FPTAS with the running time of the exhaustive algorithm for
permutational distribution. For simplicity, in our tests we assumed no censoring (i.e., c = 1n). Results are
shown in S7 Fig. S7a Fig. shows the average runtime of the FPTAS with n1 = 10, ε = 5, for different
values of n. (Standard deviations are not shown since they are very small compared to the runtime.) For the
same instances we also ran the exhaustive algorithm 10 times, stopping it after 5 hours (i.e., 18000 seconds)
if it did not terminate. Results for the exhaustive algorithm are shown in S7a Fig. as well. The starred (∗)
values of n are values for which the exhaustive algorithm was stopped after 5 hours in each of the 10 runs.
The exhaustive algorithm is practical only for very small values of n, while the FPTAS can be used for much
larger values of n. S7b Fig. shows how the runtime of the FPTAS varies for different values of n1, with
n = 100, ε = 5. As expected the runtime increases with n1, but it is still practical for values of n1 up to
0.2n. We report the runtime of the exhaustive algorithm for comparison. Note that for n = 100, n1 = 20
the exhaustive algorithm would take more than 160 years even running on a 100 Ghz machine under the
unrealistic assumption that it could compute the log-rank statistic of a vector x every clock cycle. S7c Fig.
shows how the runtime of the FPTAS varies for different values of the approximation parameter ε. We
measured the runtime over 10 runs with n = 100, n1 = 10, and no censoring. As expected, the runtime
decreases by increasing ε. We also compared the p-value obtained using the FPTAS with the exact p-value
(obtained with the complete enumeration algorithm) for n = 60, n1 = 4, no censoring, and ε = 1.5. The
results are shown in S7d Fig.

Cancer data
TCGA data

We analyzed somatic mutation and clinical data, including survival information, from the TCGA data portal
(https://tcga-data.nci.nih.gov/tcga/). In particular we considered single nucleotide vari-
ants (SNVs) and small indels for colorectal carcinoma (COADREAD), glioblastoma multiforme (GBM),
kidney renal clear cell carcinoma (KIRC), lung squamous cell carcinoma (LUSC), ovarian serous adenocar-
cinoma (OV), and uterine corpus endometrial carcinoma (UCEC). Since genes mutated in the same patients
have the same association to survival, we collapsed them into metagenes, recording the genes that appear in
a metagene. S1 Table shows a number of statistics for each dataset. We restricted our analysis to patients for
which somatic mutation and survival data were both available. We only considered genes mutated in > 1%
and in < 10% of patients. For each remaining gene, we first obtained an estimate p̃ of the p-value using
an MC approach, and if p̃ ≤ 0.01 we used ExaLT to compute a controlled approximation of the p-value.
S3 Fig. shows the comparison between the exact permutational p-value and the R survdiff p-value, the
exact conditional p-value, or the asymptotic permutational p-value for each considered gene.

We compared the genes reported in the top positions by the different tests. The number of genes shared
in the top positions of the lists obtained by the exact permutational test and the exact conditional test, and
by the exact permutational test and R survdiff for the different cancer types are: in COADREAD, 8
genes are in the top 10 positions by the exact permutational test and by R survdiff, and 10 in the top 10
positions by the exact permutational test and by the exact conditional test, while 23 genes are in the top 25
positions by the exact permutational test and by R survdiff, and 23 in the top 25 positions by the exact
permutational test and by the exact conditional test; in GBM, no gene is in the top 10 positions by the exact
permutational test and by R survdiff, and 2 in the top 10 positions by the exact permutational test and
by the exact conditional test, while no gene is in the top 25 positions by the exact permutational test and by
R textttsurvdiff, and 2 in the top 25 positions by the exact permutational test and by the exact conditional
test; in KIRC, 3 genes are in the top 10 positions by the exact permutational test and by R survdiff,
and 4 in the top 10 positions by the exact permutational test and by the exact conditional test, while 10

9

genes are in the top 25 positions by the exact permutational test and by R survdiff, and 16 in the top 25
positions by the exact permutational test and by the exact conditional test; in LUSC, no gene is in the top
10 positions by the exact permutational test and by R survdiff, and no gene is in the top 10 positions
by the exact permutational test and by the exact conditional test, while 1 gene is in the top 25 positions by
the exact permutational test and by R survdiff, and 4 in the top 25 positions by the exact permutational
test and by the exact conditional test; in OV, no gene is in the top 10 positions by the exact permutational
test and by R survdiff, and 1 gene is in the top 10 positions by the exact permutational test and by
the exact conditional test, while 3 genes are in the top 25 positions by the exact permutational test and by
R survdiff, and 7 in the top 25 positions by the exact permutational test and by the exact conditional
test; in UCEC, 5 genes are in the top 10 positions by the exact permutational test and by R survdiff, and
7 in the top 10 positions by the exact permutational test and by the exact conditional test, while 15 genes are
in the top 25 positions by the exact permutational test and by R survdiff, and 24 in the top 25 positions
by the exact permutational test and by the exact conditional test.

Published Cancer Studies

We analyzed differences between survival distributions reported in two published genomic studies [20, 21].
We considered only cases where the smallest population included at most 30% of all samples. We compared
the exact permutational p-value with the p-value reported in the publications obtained using asymptotic
approximations. Since the data for these studies is not publicly available, we inferred the data necessary
to perform the log-rank test using the figures in the publications. In particular, since the exact time of
events (censored or not) is not used by the log-rank test, we only inferred the order of events into the
two populations and the censoring information. We then used R survdiff to obtain the p-value from the
asymptotic approximation, and compared it with the p-value reported in the paper to validate the information
we inferred from the figures.

In particular, for [20] we considered:

• Figure 2L: population sizes: 2 and 14. Reported p = 0.012; R survdiff p = 0.012; exact permu-
tational p = 0.17;

• Figure 2I: population sizes: 8 and 48. Reported p < 10−4; R survdiff p = 6 × 10−6; exact
permutational p = 2× 10−3;

• Figure 2H: population sizes: 9 and 21. Reported p = 3.2 × 10−3; R survdiff p = 3.2 × 10−3;
exact permutational p = 1.1× 10−2.

For [21] we considered:

• Figure 3A: population sizes: 14 and 115. Reported p = 2 × 10−3; R survdiff p = 2.3 × 10−3;
exact permutational p = 4.8× 10−4;

• Figure 3B: population sizes: 14 and 38. Reported p < 10−3; R survdiff p = 6 × 10−6; exact
permutational p = 5× 10−4.

Comparison of Exact Permutational Test and Cox Proportional-Hazard Model on Synthetic
Data
Three asymptotically equivalent statistical tests are commonly used to assess significance using the Cox
Proportional-Hazard model: the score test, the Wald test, and the likelihood ratio test. All the three tests are
based on an asymptotic approximation for the distribution of the test statistic.

We applied the three tests (score test, Wald test, and likelihood ratio test) to assess statistical signifi-
cance under the Cox Proportional-Hazard Model, on randomly generated survival and mutation data, where

10

no mutation is associated with survival. The three tests are based on asymptotic approximations for the dis-
tribution of the test statistic. We focused on the case of unbalanced populations. In particular, we considered
n = 200 total patients, and n1 = 5 patients in the small population. We used the R coxph function to
compute the p-values. S4a Fig. shows that for the score test and the Wald test the asymptotic approximation
is inaccurate, while the asymptotic approximation is pretty accurate for the likelihood ratio test.

We then compared the accuracy of the p-values obtained with the exact permutational test and the p-
values from the Cox likelihood ratio test. In particular, we use synthetic data, generated using the same
distribution for the survival time and for the censoring time for all patients, and using different procedures to
generate the mutation data. More specifically, we compared the empirical p-value (obtained by generating
the data a number of times using the same parameters for the distribution) with the p-values from the exact
permutational test and the p-values from the Cox likelihood ratio test using synthetic data. We generate the
mutation data using two related but different procedures. In the first procedure, we mutate a gene g in exactly
a fraction f of all patients. In the second procedure, we mutated a gene g in each patient independently with
probability f . The second procedure models the fact that mutations in a gene g are found in each patient
independently with a certain probability (that depends on the background mutation rate, the length of the
gene, etc.). Thus, when repeating a study on a cohort of patients of the same size, only the expected number
of patients in which g is mutated is the same, and the observed number may vary. In both cases, the survival
information is generated from the same distribution for all patients. In particular, the survival time comes
from the exponential distribution with expectation equal to 30, and censoring variable from an exponential
distribution resulting in 30% of censoring. In S4b Fig. we compare the p-values computed from the exact
permutational test and the Cox likelihood ratio test with the empirical p-values for the first distribution, while
in S4c Fig. we compare the p-values computed from the exact permutational test and the Cox likelihood
ratio test with the empirical p-values for the second distribution. In both cases we generated the empirical p-
values as in S2 Fig.. In both cases, the p-values (restricted to p-values ≤ 0.01) from the exact permutational
distribution have higher R coefficients than the p-values from the Cox likelihood ratio test when compared
to the empirical p-values (considering the −log10 p-values in order to compute the R coefficient).

The Cox proportional-hazards model is often used to correct for other variables that may be correlated
to survival, like age, gender, or tumor stage. While the multivariate case is not the focus of this work, in this
scenario a common rule of thumb [40, 43, 44] states that Cox models should be used with a minimum of 10
outcome events per predictor variable to obtain reliable results. This limits its applicability to moderately
frequent events even in large genomic studies. For example, if we include three predictor variables in the
model in addition to the mutation status of a gene, then only two of our seven cancer datasets (LUSC
and UCEC) have more than 3 genes (7 and 8, respectively) that have the minimum recommended number
of mutations. Extensions of the exact test presented here might prove useful in such settings of a small
number of events per predictor variable. In particular, a stratified log-rank test using an exact distribution is
a promising alternative.

11

References
[40] Concato J, Peduzzi P, Holford TR, and Feinstein AR. Importance of events per independent vari-

able in proportional hazards analysis. i. background, goals, and general strategy. J Clin Epidemiol,
48(12):1495–501, Dec 1995.

[41] Dyer M, Frieze A, Kannan R, Kapoor A, Perkovic L, and Vazirani U. A mildly exponential time
algorithm for approximating the number of solutions to a multidimensional knapsack problem. Com-
binatorics, Probability and Computing, 2(03):271–284, 1993.

[42] Mantel N, Patel NR, and Gray R. Computing an Exact Confidence Interval for the Common Odds
Ratio in Several 2x2 Contingency Tables. Journal of the American Statistical Association, 80:969–
973, 1985.

[43] Peduzzi P, Concato J, Feinstein AR, and Holford TR. Importance of events per independent variable
in proportional hazards regression analysis. ii. accuracy and precision of regression estimates. J Clin
Epidemiol, 48(12):1503–10, Dec 1995.

[44] Peduzzi P, Concato J, Kemper E, Holford TR, and Feinstein AR. A simulation study of the number of
events per variable in logistic regression analysis. J Clin Epidemiol, 49(12):1373–9, Dec 1996.

12

