
Text S1

Determining the shape of the tolerance curve

We investigated the relationship between CD4+ T cell decline and set-point viral
load by a series of regression analyses. A linear relationship ∆CD4 = a+ b log10 V ,
as used for example by Rodrigues et al [1], fits significantly worse than a quadratic
relationship ∆CD4 = a+ b log10 V + c(log10 V )2 (F -test: p = 5.7× 10−5 for the full
dataset with 3036 individuals, and p = 0.015 for the subset of 923 individuals with
HLA-B genotype information).

For the full dataset (n=3036), we obtained a = −0.10 ± 0.06, b = 0.051 ± 0.032,
and c = −0.017 ± 0.004. For the subset of HLA-B genotyped individuals (n=923)
we estimated: a = −0.058 ± 0.081, b = 0.029 ± 0.046, and c = −0.015 ± 0.006.
However, the linear terms and the intercept are not significantly different from zero.

We therefore based most of the analysis in the present study on the quadratic
model: ∆CD4 = α(log10 V )2 (Equation 1 in the main text). The parameter α in
this model measures tolerance (see main text), and is estimated as −0.0111±0.0003
(n=3036), or −0.0117 ± 0.0004 (n=923). The coefficient of determination of the
quadratic model fit is 5% (n=3036), or 9% (n=923).

Models including sex and age at infection

We performed a multivariate linear regression of the logarithm of the set-point viral
load against sex and age at infection. We found that, on a logarithmic scale to
the base 10, the set-point viral load of females is by 0.254 ± 0.035 lower than that
of males. This difference was highly significant (p-value=2.2 × 10−13). We also
found that the set-point viral load increased significantly with age at infection (p-
value=1.5× 10−6). On a logarithmic scale to the base 10, the increase is estimated
to be 0.0077± 0.0016 per year of age.

We also performed a multivariate linear regression of the CD4+ T cell decline
against sex and age at infection. We found no significant association of the CD4+
T cell decline with sex (p-value=0.58). But the CD4+ T cell decline becomes sig-
nificantly faster with increasing age at infection (p-value=8.2× 10−13). With every
year of age, the CD4+ T cell slope decreases by 0.0038 ± 0.0005 cells per µl blood
per day of infection. For example, for an individual who becomes infected at the
age of 20, the CD4+ T cell slope is -0.1428 cells per µl blood per day of infection,
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while, for an individual who becomes infected at the age of 21, it is -0.1466 cells per
µl blood per day of infection.

The association of tolerance with sex was investigated by fitting the following
model:

∆CD4 = (αF + ηM)(log10 V )2 (S1)

Hereby αF denotes the tolerance of females, and ηM denotes the offset in tolerance
for male individuals, i.e. tolerance in males is αF + ηM . The following table shows
the parameter estimates of this model:

Parameter Estimate Std. Error t value Pr(>|t|)
αF -0.010941 0.000531 -20.597229 0.000000
ηM -0.000243 0.000616 -0.393922 0.693666

The parameter ηM , describing the tolerance difference between males and females,
is not significantly different from 0. An F -test of this model against the baseline
model (Equation 1 in the main text) confirmed this (p-value=0.69).

The relationship between tolerance and age at infection was modeled as a linear
effect of age. In particular, we assumed that tolerance is related to the age, a,
linearly:

∆CD4 = (α0 + c a)(log10 V )2

Here α0 characterizes the tolerance at birth, and c describes the increase or decrease
of tolerance per life year. (This equation is identical to Equation 4 in the main text,
and is repeated for convenience.) They were estimated as α0 = 5.6× 10−3, and c =
−1.6×10−4/life year. An F -test of this model against the baseline model (Equation 1
in the main text) showed that age at infection has a significant association with
tolerance (p-value=10−9).

We combined sex and age at infection into a multivariate analysis by allowing the
two parameters in the equation above, α0 and c, to differ between the sexes:

∆CD4 = [α0,F + η0,M + (cF + zM)a](log10 V )2 (S2)

Here, α0,F and cF denote the tolerance at birth and its change per life years in
females. The parameter η0,M describes the sex difference of tolerance at birth, and
zM the sex difference between the change of tolerance per life year. We found
that neither the tolerance at birth, nor the change of tolerance per life year differ
significantly between the sexes as shown in the following table:

Parameter Estimate Std. Error t value Pr(>|t|)
α0,F -0.005866 0.001726 -3.399015 0.000685∗

η0,M 0.000491 0.002065 0.237836 0.812025
cF -0.000167 0.000054 -3.089102 0.002026∗

zM -0.000001 0.000062 -0.010780 0.991400
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Multivariate models including HLA-B homozygosity,
carriage of protective HLA-B alleles, CCR5∆32, and
predicted HLA-C expression levels

Carriage of protective HLA-B alleles and of CCR5∆32, predicted HLA-C expression
levels, and HLA-B homozygosity were used as covariates in the regression of CD4+
T cell decline against set-point viral load. We did not consider HLA-B alleles with
detrimental effect as a covariate because they always co-occurred with protective
alleles.

We constructed univariate models including each factor in isolation, multivariate
models including one of these four factors in combination with sex and age at infec-
tion, and a multivariate model including all six covariates. The multivariate model
including all six covariates is given by the following equation:

∆CD4 = [α0 +ηhomo +ηprot +ηCCR5∆32 +ηC−med +ηC−hi +η0,M +(c+zM)a](log10 V )2

(S3)
α0 in this model denotes the tolerance of females at birth, who do not carry pro-
tective HLA-B alleles and CCR5∆32, and have low predicted HLA-C expression.
The parameters ηhomo, ηprot, ηCCR5∆32, ηC−med, and ηC−hi, denote the offsets in tol-
erance in individuals who are HLA-B homozygous, carry protective HLA-B alleles,
CCR5∆32, or have medium or high HLA-C expression, respectively.

The estimates of the parameters of the multivariate regression model (Equa-
tion S3) are given in the following table:

Estimate Std. Error t value Pr(>|t|)
α0 -0.012842 0.002973 -4.319891 0.000018∗

ηhomo -0.006707 0.001858 -3.609466 0.000327∗

ηprot 0.000312 0.000946 0.329876 0.741586
ηCCR5∆32 0.000709 0.001163 0.610052 0.542013
ηC−med 0.001037 0.001022 1.014641 0.310605
ηC−hi 0.000798 0.001390 0.573747 0.566312
η0,M 0.003640 0.003473 1.047878 0.295034
cF -0.000074 0.000079 -0.942591 0.346195
zM 0.000002 0.000093 0.024057 0.980814

Of the four factors, only HLA-B homozygosity is significantly associated with toler-
ance. For this smaller dataset, an association of tolerance with the age at infection
is not detectable. An F -test against a model without HLA-B homozygosity as a
covariate corroborated that homozygosity significantly associates with tolerance:

Res.Df RSS Df Sum of Sq F Pr(>F)
1 747 36.82
2 748 37.46 -1 -0.64 13.03 0.0003

To assess if this multivariate regression is confounded by differences in the eth-
nicity between the individuals in our study population, we excluded individuals
who were not of European ancestry. We found that HLA-B homozygosity remains
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the only significant effect and the parameters estimates change only marginally:
α0 = −0.0137 ± 0.0032, ηhomo = −0.0065 ± 0.0019. An F -test against a model
without homozygosity results in a p-value of 0.0006.

Mixed effects models with combined HLA-B genotype

The potential effect of combined HLA-B genotypes on tolerance was included as a
random effect:

∆CD4 = (α + αh)(log10V )2

(This equation is identical to Equation 2 in the main text, and is repeated for
convenience.) In this model, we divided the tolerance parameter into an average
component α, and a random effect αh associated with the HLA-B genotype. The
random effect was assumed to be normally distributed with mean zero, and stan-
dard deviation σh. The mixed effects modeling approach estimates this standard
deviation σh, rather than a specific tolerance parameter for each of the 375 HLA-B
genotypes. Thus, the mixed effects model has only two additional parameter, α and
σh, instead of 375, reducing the risk of overfitting the data. We estimated a stan-
dard deviation of σh = 0.0040 with a 95% confidence interval ranging from 0.0029 to
0.0056. A likelihood ratio test against the baseline model (Equation 1 in the main
text) corroborates that this effect is significant:

Model df log likelihood Test likelihood ratio p-value
Equation 2 3 69.48
Equation 1 2 62.56 1 vs 2 13.85 0.00020

Including HLA-B genotype as a random effect increases the coefficient of determi-
nation, R2, of the tolerance curve to 25.0%.

Approximately half of the 375 genotype groups are represented by only one in-
dividual (see Figure 4A). Excluding these genotypes from our analysis makes our
results stronger: the significance of the random effect improves from p = 0.0002 to
p = 0.00002, the deviance of the random effect, a measure of the effects size, increases
from 0.0040 to 0.0060, and the coefficient of determination becomes R2 = 35%. If
we restrict our analysis to individuals with European ancestry, the random effect
remains significant (p = 0.0008) and we estimate the deviance of the random effect
as 0.0039 with a confidence interval ranging from 0.0027 to 0.0057. These numbers
differ only marginally from those estimated from the full dataset.

Including sex and age at infection (and their interaction) as covariates, we ob-
tained an identical estimate for σh: 0.0040 with an 95% confidence interval ranging
from 0.0029 to 0.0056, and the random effect is significant (likelihood ratio test:
p-value=0.00015). Additionally including HLA-B homozygosity, protectiveness of
HLA-B alleles, carriage of CCR5∆32, and predicted HLA-C expression levels as
covariates, we estimated σh = 0.0031(0.0019 − 0.0051). Again, a likelihood ratio
test against a model without random effect yields a p-value of 0.015, i.e shows that
the random effect is significant. The significant improvement of the mixed effects
model fit over the model with all covariates (Equation S3) further shows that the
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significance of the random effect is not only due to the association of tolerance with
HLA-B homozygosity.

The mixed effects model predicts the tolerance parameter, αh, for each combined
HLA-B genotype. Figure S3 shows a histogram of the best linear unbiased predic-
tions of αh across HLA-B genotypes. These predictions are over-dispersed, which
constitutes a deviation from the normality assumption underlying the mixed-effect
model. To identify HLA-B alleles that are associated with tolerance, we plotted the
best linear unbiased predictions [2] of each HLA-B genotype against the HLA-B al-
leles they contain (see Figure S4). The average effect we could assign to a particular
HLA-B allele ranges only from -0.013 to -0.010, whereas the best linear unbiased
predictions of each combined HLA-B genotype have a much larger range from -0.024
to -0.006. This suggests that the combined effect of two HLA-B alleles is not simply
the sum of their individual effects. We tested this more formally, by comparing the
variances in tolerance of the combined HLA-B genotypes to two-times the variance
of the average effects of individual alleles with an F -test. The variances of the effects
of the combined genotypes are estimated to be 11.5 times larger than the sum of
the effects of individual alleles. This effect is highly significant (p-value= 2×10−16).
We also found that homozygous HLA-B genotypes had significantly lower best lin-
ear unbiased predictions of the tolerance parameter, αh (Wilcoxon test, p = 0.002),
consistent with the significant association of tolerance with HLA-B homozygosity.

To further investigate if particular HLA-B alleles are associated with significantly
higher or lower tolerance, we defined a binary factor for each of the 73 alleles in the
study population. This factor indicated if an individual carries the HLA-B allele in
question. A multivariate regression analysis with all the 73 factors showed that none
of the 73 HLA-B alleles is associated with significantly lower or higher than average
tolerance. This finding is consistent with the view that the variation in tolerance
associated with the combined HLA-B genotypes arises through complex interactions
between the two HLA-B alleles, rather than just by adding their individual effects.
However, it may also be due to a lack of statistical power.

We followed the same procedure for HLA-A and HLA-C. We found a significant
association of tolerance with combined HLA-C genotype (p-value=0.026), but none
with combined HLA-A genotype (p-value=1.00).

Trade-offs between tolerance and resistance

In the context of our tolerance analysis, resistance can be quantified as the average
set-point viral load across individuals sharing a genotype. The lower this average
set-point viral load, the more resistant the genotype.

To determine the average set-point viral load for each combined HLA-B genotype,
we regressed the set-point viral load against the combined HLA-B genotype, using
HLA-B genotype as a random effect. The resulting best linear unbiased predictions
of the set-point-viral loads are a measure of the level of resistance of each genotype
group.

To investigate a potential trade-off between resistance and tolerance, we deter-
mined the correlation between best linear unbiased predictions for the set-point viral
load and for the tolerance of each combined HLA-B genotype. The correlation coef-
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ficient did not differ significantly from zero (Pearson’s product-moment correlation,
p-value=0.40).
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