Public Library of Science
Browse

Insect-specific RNA viruses detection in Field-Caught Aedes aegypti mosquitoes from Argentina using NGS technology

Posted on 2025-01-10 - 20:22

Mosquitoes are the primary vectors of arthropod-borne pathogens. Aedes aegypti is one of the most widespread mosquito species worldwide, responsible for transmitting diseases such as Dengue, Zika, and Chikungunya, among other medically significant viruses. Characterizing the array of viruses circulating in mosquitoes, particularly in Aedes aegypti, is a crucial tool for detecting and developing novel strategies to prevent arbovirus outbreaks. In this study, we address the implementation of a sequencing and analysis pipeline based on the Oxford Nanopore Technologies MinION Mk1b system, for arboviral detection in field-caught mosquitoes from Argentina. Full genome of Humaita Tubiacanga Virus (HTV), Phasi Charoen-like Phasivirus (PCLV), Aedes aegypti totivirus (AaeTV) has been sequenced in three distinct regions of Argentina comprising Buenos Aires province, Santa Fe province and the northern province of Salta. Viral sequences enriched by SISPA and coupled with Nanopore sequencing can be a useful tool for viral surveillance, not only for detecting viruses that have a high impact on human and animal health, but also for detecting insect-specific viruses that could promote the transmission of arboviruses.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?