Public Library of Science
Browse
pcbi.1011142.s021.pdf (93.66 kB)

Simulation parameters.

Download (93.66 kB)
journal contribution
posted on 2023-05-25, 17:45 authored by Gaurav Bajpai, Samuel Safran

Chromosomes are arranged in distinct territories within the nucleus of animal cells. Recent experiments have shown that these territories overlap at their edges, suggesting partial mixing during interphase. Experiments that knock-down of condensin II proteins during interphase indicate increased chromosome mixing, which demonstrates control of the mixing. In this study, we use a generic polymer simulation to quantify the dynamics of chromosome mixing over time. We introduce the chromosome mixing index, which quantifies the mixing of distinct chromosomes in the nucleus. We find that the chromosome mixing index in a small confinement volume (as a model of the nucleus), increases as a power-law of the time, with the scaling exponent varying non-monotonically with self-interaction and volume fraction. By comparing the chromosome mixing index with both monomer subdiffusion due to (non-topological) intermingling of chromosomes as well as even slower reptation, we show that for relatively large volume fractions, the scaling exponent of the chromosome mixing index is related to Rouse dynamics for relatively weak chromosome attractions and to reptation for strong attractions. In addition, we extend our model to more realistically account for the situation of the Drosophila chromosome by including the heterogeneity of the polymers and their lengths to account for microphase separation of euchromatin and heterochromatin and their interactions with the nuclear lamina. We find that the interaction with the lamina further impedes chromosome mixing.

History