Public Library of Science
Browse

PTRE-HPRT inactivation correlates with repressive histone modifications.

Download (0 kB)
figure
posted on 2009-03-12, 01:35 authored by Jon A. Oyer, Adrian Chu, Sukhmani Brar, Mitchell S. Turker

ChIP analysis measuring histone H3 modifications at the PTRE-HPRT promoter in HP14 cells expressing high levels of HPRT (Untreated), reduced levels of HPRT after 1 week Dox treatment (Dox), and HP14-derived TG-resistant cell lines (TG1, TG5, and TG6). (A) ChIP analysis measuring acetylated histone H3 using a polyclonal antibody raised against a peptide corresponding to acetyl-K9 and acetyl-K14. (B) ChIP analysis measuring methylation at lysine 4 of histone H3 (methyl-K4 H3). The antibody used for immunoprecipitation recognizes all three forms of methylation at K4, mono-, di-, and tri-methyl. (C) ChIP analysis measuring the repressive modification of dimethylation at lysine 9 of histone H3 (di-methyl-K9 H3). (D) ChIP analysis measuring acetylation at lysine 9 of histone H3 (acetyl-K9 H3). Immunoprecipitated DNA levels were quantified by qRT-PCR. Specific signal was calculated by measuring fold change between pull down and input at the Hprt promoter (PTRE-HPRT), Gapdh promoter (P-Gapdh), and Mage-a promoter (P-Mage-a). For activating modifications, levels at PTRE-HPRT are displayed relative to the Gapdh promoter; for the repressive modification, dimethyl-K9 H3, results are displayed relative to the Mage promoter. Error bars indicate the SD from triplicate reactions.

History

Usage metrics

    PLOS ONE

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC