Public Library of Science
Browse

Profiling side-channel attack.

Download (256.36 kB)
figure
posted on 2025-04-09, 17:47 authored by Hai Huang, Jinming Wu, Xinling Tang, Shilei Zhao, Zhiwei Liu, Bin Yu

Deep learning, as a high-performance data analysis method, has demonstrated superior efficiency and accuracy in side-channel attacks compared to traditional methods. However, many existing models enhance accuracy by stacking network layers, leading to increased algorithmic and computational complexity, overfitting, low training efficiency, and limited feature extraction capabilities. Moreover, deep learning methods rely on data correlation, and the presence of noise tends to reduce this correlation, increasing the difficulty of attacks. To address these challenges, this paper proposes the application of an InceptionNet-based network structure for side-channel attacks. This network utilizes fewer training parameters. achieves faster convergence and demonstrates improved attack efficiency through parallel processing of input data. Additionally, a LU-Net-based network structure is proposed for denoising side-channel datasets. This network captures the characteristics of input signals through an encoder, reconstructs denoised signals using a decoder, and utilizes LSTM layers and skip connections to preserve the temporal coherence and spatial details of the signals, thereby achi-eving the purpose of denoising. Experimental evaluations were conducted on the ASCAD dataset and the DPA Contest v4 dataset for comparative studies. The results indicate that the deep learning attack model proposed in this paper effectively enhances side-channel attack performance. On the ASCAD dataset, the recovery of keys requires only 30 traces, and on the DPA Contest v4 dataset, only 1 trace is needed for key recovery. Furthermore, the proposed deep learning denoising model significantly reduces the impact of noise on side-channel attack performance, thereby improving efficiency.

History