Architecture of YOLOv8 for follicle detection in PCOS.
figure
posted on 2024-08-15, 17:48 authored by Sowmiya S., Snekhalatha Umapathy, Omar Alhajlah, Fadiyah Almutairi, Shabnam Aslam, Ahalya R. K.Architecture of YOLOv8 for follicle detection in PCOS.
History
Usage metrics
Categories
Keywords
whereas statistical featurestwo different datasetstochastic gradient descentprimary objectives encompasshybrid fuzzy cextract statistical featuresderived using graydataset 2 consistsovarian follicles usingidentified follicles usingdiv >< pvarious ml modelsimpressive classification accuracytrained modelsfollicles netyolov8 methodvision transformersubsequently segmentstudy ’rf ),research involvedrandom forestoccurrence matricesobject detectionmachine learninglevel cok healthy controlsglcm ).follicle detectionefficient tooldeep learningdataset2 respectively>- star
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC