- No file added yet -
Ten-fold cross validation: Comparison of the performance of five machine learning models predicting primary refractory disease.
dataset
posted on 2024-10-02, 06:40 authored by Marie Y. Detrait, Stéphanie Warnon, Raphaël Lagasse, Laurent Dumont, Stéphanie De Prophétis, Amandine Hansenne, Juliette Raedemaeker, Valérie Robin, Géraldine Verstraete, Aline Gillain, Nicolas Depasse, Pierre Jacmin, Delphine PrangerTen-fold cross validation: Comparison of the performance of five machine learning models predicting primary refractory disease.
History
Usage metrics
Keywords
false positive rateextreme gradient boostenabling early interventiondiffuse large bct scan realizationappear highly suitable54 821152 821151 821146 821129 8211support vector machinerandom forest classifierprimary refractory diseasedisease management due012 ), comorbidityoverall survival rate64 821140 8211machine learning approachnb categorical classifierfirst line treatmentauc ), accuracycategorical classifieroverall survivalsupervised machinedisease characteristicsline therapy96 ),xlink ">xgboost ),various optionsvariables usedvalidation setusing kaplanunivariate analysisthirty patientsthereby providingsignificant challengepredict outcomespoor prognosispatients diagnosednovel decisionmulticenter studiesmeier methodmedical contextmedian followlearning techniquesinfluencing factorshematology unitfirst diagnosiseconomics statusdecember 2022cell lymphomabroader scaleavailable based83 %,8 %)42 patients2 patients2 cycles124 patients
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC