Public Library of Science
Browse
1/1
4 files

Studies on the Roles of Clathrin-Mediated Membrane Trafficking and Zinc Transporter Cis4 in the Transport of GPI-Anchored Proteins in Fission Yeast

dataset
posted on 2012-07-25, 00:37 authored by Wurentuya Jaiseng, Yue Fang, Yan Ma, Reiko Sugiura, Takayoshi Kuno

We previously identified Cis4, a zinc transporter belonging to the cation diffusion facilitator protein family, and we demonstrated that Cis4 is implicated in Golgi membrane trafficking in fission yeast. Here, we identified three glycosylphosphatidylinositol (GPI)-anchored proteins, namely Ecm33, Aah3, and Gaz2, as multicopy suppressors of the MgCl2-sensitive phenotype of cis4-1 mutant. The phenotypes of ecm33, aah3 and gaz2 deletion cells were distinct from each other, and Cis4 overexpression suppressed Δecm33 phenotypes but did not suppress Δaah3 defects. Notably, green fluorescent protein-tagged Ecm33, which was observed at the cell surface in wild-type cells, mostly localized as intracellular dots that are presumed to be the Golgi and endosomes in membrane-trafficking mutants, including Δapm1, ypt3-i5, and chc1-1 mutants. Interestingly, all these membrane-trafficking mutants showed hypersensitivity to BE49385A, an inhibitor of Its8 that is involved in GPI-anchored protein synthesis. Taken together, these results suggest that GPI-anchored proteins are transported through a clathrin-mediated post-Golgi membrane trafficking pathway and that zinc transporter Cis4 may play roles in membrane trafficking of GPI-anchored proteins in fission yeast.

History

Usage metrics

    PLOS ONE

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC