Public Library of Science
Browse
DOCUMENT
Figure_S1.pdf (204.17 kB)
DOCUMENT
Figure_S2.pdf (366.28 kB)
DOCUMENT
Figure_S3.pdf (188.25 kB)
DOCUMENT
Figure_S4.pdf (193.58 kB)
DOCUMENT
Table_S1.doc (29.5 kB)
DOCUMENT
Table_S2.docx (95.66 kB)
DOCUMENT
Table_S3.docx (148.69 kB)
DOCUMENT
Table_S4.docx (121.39 kB)
DOCUMENT
Table_S5.docx (143 kB)
DOCUMENT
Table_S6.docx (950.94 kB)
1/0
10 files

Inhibitors of Helicobacter pylori Protease HtrA Found by ‘Virtual Ligand’ Screening Combat Bacterial Invasion of Epithelia

dataset
posted on 2011-03-31, 02:10 authored by Martin Löwer, Tim Geppert, Petra Schneider, Benjamin Hoy, Silja Wessler, Gisbert Schneider

Background

The human pathogen Helicobacter pylori (H. pylori) is a main cause for gastric inflammation and cancer. Increasing bacterial resistance against antibiotics demands for innovative strategies for therapeutic intervention.

Methodology/Principal Findings

We present a method for structure-based virtual screening that is based on the comprehensive prediction of ligand binding sites on a protein model and automated construction of a ligand-receptor interaction map. Pharmacophoric features of the map are clustered and transformed in a correlation vector (‘virtual ligand’) for rapid virtual screening of compound databases. This computer-based technique was validated for 18 different targets of pharmaceutical interest in a retrospective screening experiment. Prospective screening for inhibitory agents was performed for the protease HtrA from the human pathogen H. pylori using a homology model of the target protein. Among 22 tested compounds six block E-cadherin cleavage by HtrA in vitro and result in reduced scattering and wound healing of gastric epithelial cells, thereby preventing bacterial infiltration of the epithelium.

Conclusions/Significance

This study demonstrates that receptor-based virtual screening with a permissive (‘fuzzy’) pharmacophore model can help identify small bioactive agents for combating bacterial infection.

History

Usage metrics

    PLOS ONE

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC