Public Library of Science
Browse
Figure_3.tif (1.38 MB)

Figure 3

Download (0 kB)
figure
posted on 2013-02-21, 12:36 authored by Harish Babu, Giselle Cheung, Helmut Kettenmann, Theo D. Palmer, Gerd Kempermann

Differentiated neurons originating from hippocampal precursor cells showed features of dentate gyrus granule cells. After differentiation the cells were fixed and stained for markers characteristic of dentate gyrus granule cells. A; β-III-tubulin (green), Prox1(red). B; β-III-tubulin (green), Calbindin (Red). C; β-III-tubulin (Green), Synaptoporin (Red). D; β-III-tubulin (Green), NeuN (Red). E; Differentiation led to up-regulation of molecular neuronal markers and down-regultion of precursor cell markers. Proliferating cultures (day 0) were allowed to differentiate and mRNA was extracted after different times. Differentiation led to up-regulation of NeuroD1, mash1, VGLUT1 transcripts, whereas Nestin was down-regulated. F; Up-regulation of GAD67 by differentiated neurons. Neurons differentiated for 10–12 days were washed once with medium and subjected to a 2.5 h stimulation of kainate (KA, 10 µM) or rhBDNF (100 ng/ml) in fresh medium and subsequently fixed and evaluated. GAD67 (red) was upregulated in β-III-tubulin-positive cells (green), a property associated with granule neurons in vivo. The images were captured with identical laser settings at the confocal microscope. G; Electrical properties of cultured dentate gyrus precursor cells and differentiated neurons. Membrane properties of cultured dentate gyrus precursor cells and neurons derived from them were measured while voltage-clamped to −60mV. G, H, J, K; Typical membrane currents recorded by series of depolarizing and hyperpolarizing voltage steps ranging from −120 to+80mV, with 10-mV increments (only first 7 voltage steps are shown). G; On depolarizing steps in voltage-clamps, cells showed typical features of precursor cells with outward rectifying Potassium channels. H; differentiated neurons showed properties consistent with sodium currents. I; In current-clamp, single action potentials were elicited in differentiated neurons by injecting current pulses in 20mV-increments for 100 ms. K; Current voltage curves of the fast inward currents recorded from differentiated neurons with and without TTX were constructed. Mean±SEM values averaged from day 28 old cultures are shown (•; n = 11). Such currents were completely blocked by 1 µM TTX (n = 3).

History

Usage metrics

    PLOS ONE

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC