Competition between populations with different rates of recombination.

2013-02-21T04:59:24Z (GMT) by Bruce R. Levin Omar E. Cornejo

In (A), (B) and (C) we plot the changes in the ratio of the higher rate recombining population #1, relative to the lower rate recombining population, #2, 1∶2. Runs initiated with 10 randomly chosen clones with identical starting populations for the 1 and 2 populations. In all runs the runs depicted the total population size NT = 2×108, μ = 10−8, χ1 = 5×1015, χ2 = 0, c = 0.50, e = 1.0. (A) Initially equal densities of 1 and 2 and no fitness cost associated with recombination. (B) Initial equal frequencies of #1 and #2M and a 1% fitness cost for the recombining population 1. (C) The recombining population is initially rare and there is no fitness cost associated with recombination. (D) Ratio of non-recombining to recombining 2∶1, the non-recombining population is initially rare and there is a 2% fitness cost for the recombining population.