The anti-inflammatory and immunomodulatory potential of braylin: Pharmacological properties and mechanisms by <i>in silico</i>, <i>in vitro</i> and <i>in vivo</i> approaches

<div><p>Braylin belongs to the group of natural coumarins, a group of compounds with a wide range of pharmacological properties. Here we characterized the pharmacological properties of braylin <i>in vitro</i>, <i>in silico</i> and <i>in vivo</i> in models of inflammatory/immune responses. In <i>in vitro</i> assays, braylin exhibited concentration-dependent suppressive activity on activated macrophages. Braylin (10–40 μM) reduced the production of nitrite, IL-1β, TNF-α and IL-6 by J774 cells or peritoneal exudate macrophages stimulated with LPS and IFN-γ. Molecular docking calculations suggested that braylin present an interaction pose to act as a glucocorticoid receptor ligand. Corroborating this idea, the inhibitory effect of braylin on macrophages was prevented by RU486, a glucocorticoid receptor antagonist. Furthermore, treatment with braylin strongly reduced the NF-κB-dependent transcriptional activity on RAW 264.7 cells. Using the complete Freund’s adjuvant (CFA)-induced paw inflammation model in mice, the pharmacological properties of braylin were demonstrated <i>in vivo</i>. Braylin (12.5–100 mg/kg) produced dose-related antinociceptive and antiedematogenic effects on CFA model. Braylin did not produce antinociception on the tail flick and hot plate tests in mice, suggesting that braylin-induced antinociception is not a centrally-mediated action. Braylin exhibited immunomodulatory properties on the CFA model, inhibiting the production of pro-inflammatory cytokines IL-1β, TNF-α and IL-6, while increased the anti-inflammatory cytokine TGF-β. Our results show, for the first time, anti-inflammatory, antinociceptive and immunomodulatory effects of braylin, which possibly act through the glucocorticoid receptor activation and by inhibition of the transcriptional activity of NF-κB. Because braylin is a phosphodiesterase-4 inhibitor, this coumarin could represent an ideal prototype of glucocorticoid receptor ligand, able to induce synergic immunomodulatory effects.</p></div>