Inducible transgenic expression of tripeptidyl peptidase 1 in a mouse model of late-infantile neuronal ceroid lipofuscinosis

Late-infantile neuronal ceroid lipofuscinosis is a fatal neurodegenerative disease of children caused by mutations resulting in loss of activity of the lysosomal protease, tripeptidyl peptidase 1 (TPP1). While Tpp1-targeted mouse models of LINCL exist, the goal of this study was to create a transgenic mouse with inducible TPP1 to benchmark treatment approaches, evaluate efficacy of treatment at different stages of disease, and to provide insights into the pathobiology of disease. A construct containing a loxP-flanked stop cassette inserted between the chicken-actin promoter and a sequence encoding murine TPP1 (TgLSL-TPP1) was integrated into the ROSA26 locus in mice by homologous recombination. Tested in both transfected CHO cells and in transgenic mice, the TgLSL-TPP1 did not express TPP1 until cre-mediated removal of the LSL cassette, which resulted in supraphysiological levels of TPP1 activity. We tested four cre/ERT2 transgenes to allow tamoxifen-inducible removal of the LSL cassette and subsequent TPP1 expression at any stage of disease. However, two of the cre/ERT2 driver transgenes had significant cre activity in the absence of tamoxifen, while cre-mediated recombination could not be induced by tamoxifen by two others. These results highlight potential problems with the use of cre/ERT2 transgenes in applications that are sensitive to low levels of basal cre expression. However, the germline-recombined mouse transgenic that constitutively overexpresses TPP1 will allow long-term evaluation of overexposure to the enzyme and in cell culture, the inducible transgene may be a useful tool in biomarker discovery projects.