Characterization and variation of the rhizosphere fungal community structure of cultivated tetraploid cotton

Rhizosphere fungal communities exert important influencing forces on plant growth and health. However, information on the dynamics of the rhizosphere fungal community structure of the worldwide economic crop cotton (Gossypium spp.) is limited. In the present study, next-generation sequencing of nuclear ribosomal internal transcribed spacer-1 (ITS1) was performed to characterize the rhizosphere fungal communities of G. hirsutum cv. TM-1 (upland cotton) and G. barbadense cv. Hai 7124 (island cotton). The plants were grown in field soil (FS) that had been continuously cropped with cotton and nutrient-rich soil (NS) that had not been cropped. The fungal species richness, diversity, and community composition were analyzed and compared among the soil resources, cotton genotypes, and developmental stages. We found that the fungal community structures were different between the rhizosphere and bulk soil and the difference were significantly varied between FS and NS. Our results suggested that cotton rhizosphere fungal community structure variation may have been primarily influenced by the interaction of cotton roots with different soil resources. We also found that the community composition of the cotton rhizosphere fungi varied significantly during different developmental stages. In addition, we observed fungi that was enriched or depleted at certain developmental stages and genotypes in FS and NS, and these insights can lay a foundation for deep research into the dynamics of pathogenic fungi and nutrient absorption of cotton roots. This research illustrates the characteristics of the cotton rhizosphere fungal communities and provides important information for understanding the potential influences of rhizosphere fungal communities on cotton growth and health.