Azithromycin does not improve disease severity in acute experimental pancreatitis

Acute pancreatitis is a severe systemic disease triggered by a sterile inflammation and initial local tissue damage of the pancreas. Immune cells infiltrating into the pancreas are main mediators of acute pancreatitis pathogenesis. In addition to their antimicrobial potency, macrolides possess anti-inflammatory and immunomodulatory properties which are routinely used in patients with chronic airway infections and might also beneficial in the treatment of acute lung injury. We here tested the hypothesis that the macrolide antibiotic azithromycin can improve the course of acute experimental pancreatitis via ameliorating the damage imposed by sterile inflammation, and could be used as a disease specific therapy. However, our data show that azithromycin does not have influence on caerulein induced acute pancreatitis in terms of reduction of organ damage, and disease severity. Furthermore Infiltration of immune cells into the pancreas or the lungs was not attenuated by azithromycin as compared to controls or ampicillin treated animals with acute experimental pancreatitis. We conclude that in the chosen model, azithromycin does not have any beneficial effects and that its immunomodulatory properties cannot be used to decrease disease severity in the model of caerulein-induced pancreatitis in mice.